
Iowa State Board of Education

Executive Summary March 8, 2007

Agenda Item: The Carl D. Perkins Career and Technical Education Act of

2006—Transition Plan—July 1, 2007 – June 30, 2008

Iowa Goal: 3. Iowans will pursue higher education that results in an improved

quality of life supported by better economic opportunities through

high skill employment.

Equity Impact:

Statement: This report describes services provided by the high school and

community colleges that support open access, education, and

programs to constituents.

Presenters: Janice Nahra Friedel, Ph.D., Administrator

Division of Community Colleges and Workforce Preparation

James Fliehler, Educational Program Consultant

Bureau of Community Colleges and Workforce Preparation

Attachments: 2

Recommendation: It is recommended that the State Board approve the Carl D. Perkins

Transition Plan—July 1, 2007 – June 30, 2008.

Background: By completing the reauthorization of the 2006 Perkins Act,

Congress showed its overwhelming support for career and technical education. Perkins funds are critical to the continued provision of high school and postsecondary career and technical programs in Iowa. This presentation provides an overview of the

state's transition plan—July 1, 2007 – June 30, 2008.

U. S. Department of Education Office of Vocational and Adult Education

* * * * * * * * * * * * *

The Carl D. Perkins Career and Technical Education Act of 2006

STATE PLAN COVER PAGE

State Nar	me: <u>Iowa</u>			
Eligible Agency Submitting Plan on Behalf of State: Iowa State Board of Education				
Person at, or representing, the eligible agency responsible for answering questions on this plan:				
Signatuı	re:			
Name: <u>Dr. Janice Friedel</u>				
Position: Administrator, Division of Community Colleges & Workforce Preparation				
Telephone: <u>515-281-8260</u>				
E-Mail: Janice.Friedel@iowa.gov				
Type of S	tate Plan Submission (check all that apply):			
	6-Year			
X	1-Year Transition			
	Unified – Secondary and Postsecondary			
	Unified – Postsecondary Only			
	Title I only (All Title II funds have been consolidated under Title I)			
	Title I and Title II			

II. PROGRAM ADMINISTRATION

A. Statutory Requirements

1. Prepare and submit to the Secretary a State plan for a 6-year period or a transition plan for the first year of operation of programs under the Act. [Sec. 122(a)(1)]

The State of Iowa has prepared a transition plan for the first year of operation of programs (2007-08) under the Act.

- 2. Describe the career and technical education activities designed to meet or exceed the State adjusted levels of performance, including a description of-
 - (a) career and technical education programs of study, that may be adopted by local educational agencies and postsecondary institutions to offered as an option to students (and their parents as appropriate) when planning for and completing future coursework, for career and technical content areas that: Incorporate secondary and postsecondary education elements:
 - i. Incorporate secondary education and postsecondary education elements;
 - ii. Include coherent and rigorous content, aligned with challenging academic standards, and relevant career and technical content in a coordinated, non-duplicative progression of courses that align secondary education with post-secondary education to adequately prepare students to succeed in postsecondary education.
 - iii. May include the opportunity for secondary education students to participate in dual or concurrent enrollment programs or other ways to acquire postsecondary education credits, and
 - iv. Lead to an industry-recognized credential or certificate at the postsecondary level, or an associate or baccalaureate degree.

The Iowa Department of Education staff has held several sessions to discuss the programs of study requirements under the Perkins Act IV. The intent of the discussions were to describe Career and Technical Education programs that would meet State and Federal requirements and address any other issues that would impact the definition for programs of study. The requirements in A2 (a) I-IV are addressed in a comprehensive statement that identifies the requirements for programs of study. During the transition year, eligible recipients will be convened to acquire their input regarding programs of study. This input will be used to make modifications within the state plan for a five-year period.

Requirements for Programs of Study:

• The programs of study described in this section of the transition plan are consistent with Iowa Code for secondary and postsecondary schools and the State Board of Education approved CTE program approval requirements and procedure. (Iowa Code 256.11(5)h; 258.3A; 258.4 (Requirements for Vocational Education); 260C.14 and 260C.18A 281-47.2(260C) (Requirements for Career Academies)

- CTE programs of study will consist of coherent and rigorous curriculum that includes academic and technical content that is a coordinated, non-duplicative progression of courses that align secondary education with postsecondary education to adequately prepare students to succeed in postsecondary education leading to an industry-recognized certificate or credential, including the bureau of apprenticeship and training, credit certificate, diploma, Associate of Applied Science (AAS) or Associate of Science (AS) with a career option in a specific career field.
- The CTE programs of study may include concurrent enrollment opportunities for postsecondary credit.
- As part of the local needs assessment process, school districts and community colleges shall evaluate opportunities for concurrent enrollment.
- CTE programs of study must include a sequence of at least three units of CTE coursework offered to the secondary level and linked to postsecondary education leading to an industry-recognized certificate or credential, including the bureau of apprenticeship and training, credit certificate, diploma, Associate of Applied Science (AAS) or Associate of Science (AS) with a career option in a specific career field. (Iowa Code: {256.11(5) h; 258.3A; 258.4 (requirements for Vocational Education); 260C.14 and 260C.18A 281-47.2(260C) (requirements for Career Academies)
- The CTE programs of study at the secondary level, will include competency-based applied learning that contributes to academic knowledge, higher order thinking skills, reasoning and problem-solving skills, work attitudes, general employability skills, leadership, and knowledge of all aspects of the industry including entrepreneurship. (Iowa Code Chapter 12.5(7))
- The director of the Iowa Department of Education will approve the CTE programs of study through the Iowa program approval process.
- The CTE coursework will be offered through comprehensive high schools and meets the Iowa high school graduation requirements.
- Eligible recipients will have an advisory committee with representation of both levels of
 instruction on the committee and meet all of the requirements of the Iowa program
 approval process.
- The Programs of Study will be evaluated through an annual review of the Perkins performance requirements for academic and technical attainment, placement and retention data, degree attainment data, and nontraditional career data for secondary and postsecondary programs. Additionally Iowa Code requires a more in-depth review of 20 percent of all CTE programs each year. (Iowa Administrative Rules Chapter 24, 24.5(4))

(b) In consultation with eligible recipients, develop and implement the CTE programs of study described in (a) above:

Programs of Study Process:

The Department of Education will engage the existing community college chief academic officers, community college CTE directors, school administrators, Iowa ASCD, and Tech Prep network to facilitate the development of Programs of Study. The development and design of

programs of study will utilize the current Iowa Tech Prep model that integrates career, technical and academic requirements with the federal requirements.

- During the transition year, the Department of Education will use a stakeholders group to develop the CTE structure (service areas, clusters, and pathways) and the framework for programs of study.
- During the transition year, eligible recipients will develop and implement at least one program of study within their district or consortium that mutually benefits all members of the consortium.
- All programs of study must meet the requirements set by the Department of Education for CTE program approval and must receive approval from the director of the Iowa Department of Education.
- At the end of the transition year, eligible recipients will have written agreements for the
 career-focused programs of study between educational entities. These agreements will
 define curriculum, operational policies and procedures, and credit provisions. Courses,
 both academic and technical and secondary and postsecondary, will include competencies
 (technical skill) for each course.
- Eligible recipients shall provide information regarding the programs of study through Project Easier, Plus CTE and AS-28 accordingly.
- Eligible recipients will have an advisory committee with representation of both levels of instruction on the committee.

(c) Support eligible recipients in developing and implementing articulation agreements between secondary education and postsecondary education institutions.

Articulation

One of the goals of Perkins III for both secondary and postsecondary education was to develop and improve linkage between the respective levels. State staff assisted with the establishment of articulation agreements between secondary and postsecondary CTE. During accreditation visits, Department of Education staff monitor to ensure that articulation agreements are established for each program. The state has implemented legislation that provides incentives to students, parents, and schools for providing postsecondary enrollment opportunities to secondary students through two legislative initiatives—supplemental weighting and Postsecondary Enrollment Options Act. The Department of Education also continued to provide leadership in the development of statewide articulation within program areas from secondary to postsecondary, as well as from community college to college/university.

Throughout implementation of the Carl D. Perkins Act of 1990 and 1998, the state of Iowa has placed heavy emphasis on the linkage and articulation between secondary and postsecondary education. In addition, state legislation on CTE passed in 1989 required articulation for CTE programs. The Tech Prep consortia in Iowa have played a major role in promoting and implementing linkage/articulation between secondary and postsecondary education. Several community colleges deliver college level curriculum to secondary career and technical students through jointly administered programs.

The continued focus on linkage through articulation agreements in Perkins IV is positive. While the Perkins III provision was broadly connecting secondary and postsecondary programs, Perkins IV specifically refers to articulation agreements and Tech Prep as a means of achieving effective learning transition.

The state will continue to require eligible recipients to develop and implement articulation agreements between secondary education and postsecondary education institutions in the following ways:

- In order to implement the new federal legislation effectively and provide necessary technical assistance to Iowa's schools and colleges, additional professional development activities will be designed and conducted for state staff that addresses articulation between secondary and postsecondary.
- In-service training will be designed to provide assistance for teachers, curriculum directors, counselors, and administrators in developing and strengthening linkages through articulation agreements between secondary and postsecondary education; and continuing to align and articulate curricula between secondary and postsecondary, as well as postsecondary to postsecondary to assist students in successful transition.
- Program articulation will be required within programs of study.
- A process will be developed to examine policy issues to assure a seamless transition for learners. Policies will be examined for barriers impacting transition from one learning level to another and the portability of credit to strengthen seamless transition.
- The DE will expand focus of the articulation from secondary to two-year programs and the transition from two-year programs to baccalaureate degree programs.
- The process to review existing programs (including courses) and statewide articulation agreements, as well as the need for new agreements will be developed. Continued partnerships with the Regent universities, private colleges and universities, community colleges, and high schools will be utilized. Additional applications of the Bachelors of Applied Studies at the University of Iowa will be studied. A committee will be convened to determine essential components of articulation agreements.

(d) Make available information about CTE programs of study offered by eligible recipients to secondary level:

Information about programs of study will be disseminated in a variety of methods and resources. CTE program consultants provide technical assistance to the eligible recipients about technical knowledge and skills and infused academic and career skills and knowledge. Professional development opportunities, utilizing the Iowa Professional Development Model (IPDM) for eligible recipients, will be conducted to provide best practices for integrated career and technical education programs. The areas of priority for professional development are academic integration, applied learning, working with special populations, and the incorporation of the use of data.

Examples of resources include Iowa Choices (Iowa's career information and decision-making system), electronic bulletins and updates, student course handbooks, secondary school

curriculum guides, community college handbooks, and publications such as Iowa's Community College Program Guide, and Iowa Career Resource Guide.

Iowa legislation requires all eighth grade students to complete an educational plan for high school graduation with parental involvement and approval. The educational focus of the eighth grade student plans will support the Programs of Study.

School counselors and teachers facilitate learning about career development education in grades 7 through grade 12 through career development information about career clusters, workplace skills, occupations, postsecondary opportunities, and educational opportunities with Programs of Study. Secondary school staff are encouraged to utilize electronic and print resources to inform students and parents about the opportunities available as students plan their coursework in high school and postsecondary college or training.

Section 118

The Department of Education Division of Community Colleges and Workforce Preparation is designated as the entity to meet compliance with Section 118 – Occupational and Employment Information. The DE convened a stakeholder group of counselors, teachers, administrators, community college staff, and others to develop the specifications for a statewide Career Information System (CIDS). Based on their recommendations, the DE has designated Iowa Choices, as the statewide Iowa CIDS. With their recommendations, Iowa Choices meets the following requirements for Section 118:

- Assisting students in identifying "high-skill, high-wage, or high-demand" occupations and "emerging professions."
- Assisting students to have access to regional occupational information for preparation for careers that exist in their area and provide a family-sustaining wage.
- Promoting a vast array of career options for all students, including nontraditional career areas.
- Encouraging students to take higher-level academics for preparation of a career goal.
- Preparing students for a successful postsecondary transition.
- Facilitating parent involvement.

During the transition year, the DE and it's partners, Iowa College Student Aid Commission and Iowa Student Loan Liquidity Corporation, will provide at no cost to Iowa middle and high schools, the access to the Iowa Choices (CIDS) for middle and high school students, youth correctional facilities, community colleges and public/private higher institutions, and Iowa Workforce Development centers.

Career information resources are a critical component for the professional development of counselors, administrators, and CTE instructors. These resources will be used to facilitate and support quality career guidance and academic counseling through school counselors, CTE instructors, transition coordinators, advisor/advisee programs, and academic core teachers at the secondary and postsecondary level to provide career development tools for curriculum and instructional strategies.

Local plans for secondary schools must specifically describe how career guidance and academic counseling will be provided to career and technical students. Information about how students can transition to postsecondary education setting must be described. Also, local plans for postsecondary schools will describe how resources will be provided to CTE program students, and a strong linkage on financial aid information and links to the associate degree and baccalaureate programs.

(e) For secondary and postsecondary career and technical education programs to be carried out, develop, improve, and expand access to appropriate technology in CTE programs.

Technology in CTE programs is incorporated into the delivery of program content. The Department will develop technical assistance designed to expand the use of technology in program delivery and professional development. Distance learning systems used for professional development and community college concurrent enrollment classes increases access for students and staff. Updated industry-related technology will be encouraged in skill certification for career and technical programs.

The state will develop a professional development process to deliver instructional methods utilizing technical skill applications. When applicable, joint professional development for secondary and postsecondary instructors will be delivered. The Department will encourage partnerships with business and industry to facilitate increased access to appropriate technology in career and technical education programs.

The use of technology for professional development will be encouraged. Professional development will be designed to include sharing of technology.

(f) The criteria to be used to approve eligible recipients for funds under the Act, including criteria to assess the extent to which the local plan will---

The local application has been revised to include items requiring that eligible recipients describe how they are addressing these three elements, in addition to other requirements as specified by the Act. The application also includes an assessment instrument that eligible recipients may utilize to determine their program's current status for each of the criteria. DE staff will utilize a criterion-based rubric (see Appendix A) to guide the review process of applications submitted by eligible recipient to determine compliance with the required criteria.

(g) How programs at the secondary level will prepare career and technical education students, including special populations, to graduate from secondary school with a diploma;

All career and technical education secondary programs in Iowa are located in comprehensive high schools. All enrolled students in these school systems have the opportunity to graduate with a regular high school diploma. The same requirements are in place for all students, including special populations students.

The application for the Carl D. Perkins Career and Technical Education Act 2006 will require information from the school districts and consortia regarding the measures taken to encourage high school completion during the grant application and implementation process. General education students and special populations student demographic data will be disaggregated. Local districts will be encouraged to utilize this data in their local needs assessments to develop strategies that may increase the number of students who graduate with a diploma.

(h) How such programs will prepare career and technical education students, including special populations, academically and technically for opportunities in postsecondary education or entry into high-skill, high-wage, or high-demand occupations in current or emerging occupations, and how participating students will be made aware of such opportunities;

Throughout the implementation of Perkins III, Iowa developed programs that provide a seamless pathway for students leading to an industry-recognized certificate or credential, including the Bureau of Apprenticeship and Training, credit certificate, diploma, Associate of Applied Science (AAS), or Associate of Science (AS) with a career option in a specific career field. These programs provide direct opportunity to access postsecondary education and prepare students to enter into high-skill, high-wage, or high-demand occupations. In addition, Iowa has requirements that high schools show the demand for skilled employees in related occupations as part of the state program approval process.

In addressing high-wage, high-skill, or high-demand, multiple factors will be considered as eligible recipients develop programs that lead to high-wage, high-skill or high-demand occupations. The state will work with Iowa Workforce Development (Department of Labor) to provide assistance to the eligible recipients regarding regional determination of high-wage, high-skill, or high-demand. Iowa Workforce Development determines high-demand on a statewide level as an industry with an annual growth rate of 1.2 percent (1.2%). High-wage is determined on a statewide level as being above the mean annual wage for employment. Iowa Workforce Development will provide high-skill information on a regional level.

Industry skill certifications are increasing in importance to employers and students. In the fall of 2005, Iowa conducted surveys to gather baseline information about the skill credentials community college and high school students receive. Among the data collected was information about what programs are aligned with certifications, who issues the credentials, whether aligned instructional programs are certified or accredited by that entity, whether the entity has credential requirements for the instructors, whether the test is voluntary, whether students take the exam while enrolled or after graduation, and exam pass rates.

The colleges reported a diverse array of certifications in a variety of career clusters. The state will use this information to make informed decisions on how the state will be able to address the performance indicator related to industry certifications and credentials.

The state will continue to foster alignment to industry-recognized skill standards and encourage the use of skill credentials. As "programs of study" are implemented, the state will encourage, when possible and appropriate, the utilization of industry-recognized skills standards and provide the opportunity for students to access industry skill credentials. Iowa programs of

study will identify both academic and technical courses that prepare students for success in higher education and the workforce. Because career and technical education is offered as an integral part of Iowa's comprehensive high schools, all Iowa students have the same graduation requirements.

(i) How funds will be used to improve or develop new career and technical education courses [Sec. 122 (c)(1)(D)]

The local application guidelines will provide information regarding use of funds to improve or develop new career and technical education programs of study. These programs will integrate rigorous and challenging academic and career and technical instruction and lead to an industryrecognized certificate or credential, including the Bureau of Apprenticeship and Training, credit certificate, diploma, Associate of Applied Science (AAS), or Associate of Science (AS) with a career option in a specific career field. The program of study will be designed to prepare career and technical students for high-skill, high-wage, or high-demand occupations in current and emerging professions and that link secondary and postsecondary education. Eligible recipients may choose to use funds to improve or develop new career and technical Programs of Study if their local application identifies and documents this is a need and ensures that the career and technical program of study will result in skills that are valued by the workforce. Perkins funds may be used to develop CTE curriculum that focuses on both preparation in core academic (ESEA) and career and technical programs of study, purchase required equipment including relevant technology that will strengthen academic and technical achievement, develop appropriate promotional materials, and provide support for entrepreneurship education and training. Perkins funds may also be used to provide professional development for instructors, counselors, and administrative personnel who are involved in career and technical education programs.

Because the majority of Iowa secondary schools participate in a consortium, the consortia will be encouraged to develop new career and technical education courses to expand or establish new programs of study as a consortia-wide initiative. Technical assistance will be provided from the state level for the development of new career and technical programs of study.

(j) Facilitate and coordinate communications on best practices among successful recipients of Tech Prep program grants under Title II and other eligible recipients to improve program quality and student achievement;

Multiple communication systems are in place among CTE consultants, Perkins recipients, and CTE instructors to communicate essential information to improve CTE programs (including Tech Prep) and student achievement. Activities to support program improvement include the following:

Professional Development

The system for delivering professional development at the state level is based on the Iowa Professional Development Model (**Appendix B**)

In order to implement the new federal legislation effectively and provide necessary technical assistance to the state's schools and colleges, additional professional development activities will be designed and conducted for state staff that addresses articulation between secondary and postsecondary.

In-service training will be designed to provide assistance for teachers, curriculum directors, counselors, and administrators in developing and strengthening linkages through articulation agreements between secondary and postsecondary education; and how to improve data quality and accountability systems and how to enhance the academic core in support of CTE.

The DE will develop technical assistance designed to expand the use of technology in program delivery and professional development.

The state will develop a professional development process to deliver instructional methods utilizing technical skill applications.

Program management committees have been established in each of the six CTE service areas. (agriculture, business, family and consumer sciences, health occupations, marketing and skilled and technical sciences) The work of the committees is to identify the professional development needs of their respective CTE instructors. The committees plan for the delivery and evaluation of the professional development services.

Applications for local funds and for Tech Prep funds allows for professional development to be addressed in their programs to improve the academic and technical proficiency for students. Staff development occurs at the regional and state levels. Technical assistance will be provided to implement the new federal legislation and state requirements.

State and regional workshops and conferences are supported by the DE utilizing national presenters and professional associations. The DE will explore the reintroduction of a Perkins Administrators' Conference as a vehicle to deliver technical assistance and best practices supporting the priority initiatives during the five-year cycle of the state plan.

<u>Consultant Distribution List</u> – CTE consultants communicate on a regular basis with the instructors in their service area. Communication focuses on federal and state polices, staff development, data requirements, and other issues relative to CTE program improvement and student achievement.

<u>Program Approval Process</u> – Programs seeking DE approval must address the required components described, including those criteria representative of quality CTE programs. (**Iowa Code Administrative Rules, Chapter 12**)

Monitoring and Accreditation Process – Program consultants have the responsibility to monitor the Perkins grants and conduct an on-site visit once every three years. The intent is to directly observe evidence that the Perkins grant management components and background information are used appropriately. In addition, CTE consultants participate on accreditation site visits to review CTE practices and provide input for program improvement.

<u>Perkins Application for Funds</u> - CTE consultants will review and evaluate each component of the application. Issues regarding the successful completion of the application are communicated to the recipient for correction or additions. The funds are utilized to improve CTE programs and student success.

(k) How funds will be used effectively to link academic and career and technical education at the secondary level and at the postsecondary level in a manner that increases student academic and career and technical achievement;

The state has provided for linkage of academic and career and technical education under Perkins III. Each eligible recipient has been asked to ensure that career and technical education students have been taught to the same challenging academic proficiencies as were taught to other students. A statement to this effect has been included in the Assurances/Agreement Section of the local plan. In addition, each program receiving Perkins assistance has been required to report its status relative to the performance measures and standards. The Perkins performance measure for the core indicator on secondary academic skills uses the state level database that reports the academic achievement of 11th grade students in reading and math. Data was accessible for use at the local level to assure that additional emphasis could be placed on academic skills within career and technical education programs.

Tech Prep programs have helped students meet high academic standards by integrating academic competencies into the career and technical curricula; providing learning experiences that challenge students to high levels of attainment and using assessments to document student gain and student learning/progress.

In-service training has been provided for teachers, curriculum directors, and administrators to include:

- developing strategies to assure students meet high levels of achievement in academic and technical proficiencies; and
- integration of career and technical and academic education, contextual learning.

As Perkins IV has added a specific focus on both academic and technical standards linked with high-skill, high-wage, or high-demand occupations in current and emerging professions, the state will support eligible recipients in the linkage of academic and career and technical to increase student academic and career and technical achievement in the following ways:

- An examination of the collaboration between career and technical education and the employer community and the specific academic and technical skills needed to support a "region" workforce will be designed. This will determine how well career and technical education is preparing participants for "high-skill, high-wage, or high-demand" jobs.
- Research will be conducted to focus on how well career and technical education is integrating and aligning technical content with rigorous and challenging academic standards.
- Professional development will be designed for in-service and pre-service teacher and faculty education programs.

- Professional development will be designed to help career and technical education professionals learn how to better integrate academic (ESEA) and technical content, and help coordinate their curriculums with industry-recognized certificate requirements.
- (l) Report on the integration of coherent and rigorous content aligned with challenging academic standards in CTE programs in order to adequately evaluate the extent of such integration. [Sec. 122(c)(1)(A)-(L)]

It is anticipated that OVAE will continue to utilize the CAR format to collect student attainment data from the states. Iowa will continue to align its implementation of Perkins IV with its efforts to implement NCLB legislation. Throughout the life of Perkins III, both programs defined a student as being academically proficient in the areas of math and reading if they scored at the 41st percentile (national norms) or higher on the math and reading assessment components of the Iowa Test of Educational Development. This alignment will continue into the implementation of Perkins IV. Iowa has the capability of tailoring our reporting to identify the student attainment in an individual Program of Study, as well as reporting on the consortium and career cluster level. The outcome of the student academic attainment measure will be evaluated on the state and the recipient levels.

(m)Describe how the State will provide local educational agencies, area career and technical education schools, and eligible institutions in the State with technical assistance. [Sec. 122(c)(15)]

The Division of Community Colleges and Workforce Preparation has the responsibility for providing technical assistance to recipients of federal funds for CTE. As designated by the State Board of Education and the director, the Division will administer the Perkins grant, monitor its requirements, assist in policy development, leadership, and provide technical assistance to promote the development of services and activities that integrate rigorous and challenging academic and career and technical instruction and that link secondary and postsecondary education for participating career and technical education students.

In administering the Perkins IV, Division consultants are assigned to specific regions and work with all secondary and community college recipients in those areas. As a result, consultants have the opportunity to provide technical assistance regarding articulation between secondary and postsecondary CTE programs and carry out strategies to more effectively assist members of special populations to meet the state adjusted levels of performance. They are also able to assist in identifying professional development needs the areas may have and make recommendations to the local, regional and state levels regarding professional development needs.

In the provision of technical assistance under Perkins IV, the Division will work with other bureaus and divisions within the DE to:

- assist local districts in aligning CTE with the state core indicators under the school improvement initiative.
- assist eligible recipients in implementing and reporting on the requirements of the Act.

- implement an up-to-date management information system to assure accurate data.
- support school improvement activities as linked to career and technical education.
- integrate CTE and academic education.
- provide support for leadership, initial teacher preparation, and professional development focused on improving the quality of CTE personnel.

The Division of Community Colleges and Workforce Preparation will work with secondary schools, community colleges, baccalaureate degree granting institutions, and business and industry to:

- promote Tech Prep program development;
- continue strong articulation efforts between secondary and postsecondary education to create a seamless transition too postsecondary education;
- identify needs for postsecondary programming, including delivery of services to the secondary level;
- integrate academic and technical standards into career and technical education programs; and
- provide for a proactive, systematic program of professional development for professionals serving career and technical education students.

The Division of Community Colleges and Workforce Preparation will work with Iowa Workforce Development to:

- identify common core indicators applicable to both the Perkins and Workforce Investment Acts.
- identify criteria to evaluate program placement success, as required under the Workforce Investment Act.
- identify areas of economic development that relate to the development of new career and technical education programs.

B. Other Department Requirements

- 1. Submit a copy of local applications or plans for secondary and postsecondary eligible recipients, which will meet the requirements in section 134(b) of the Act. Refer to Appendix C.
- 2. Provide a description of the State's governance structure for vocational and technical education.

Iowa's Education System

The State Board of Education, established by Iowa Code section 256.1 and appointed by the Governor, has the responsibility in the State of Iowa to establish policy and adopt accreditation rules for the operation of Iowa schools, area education agencies, and community colleges. In this role, the State Board of Education has responsibility for K-12 school districts, area education agencies, and community colleges serving students in credit courses and adult and continuing education students in noncredit courses. Additionally the Iowa State Board of Education constitutes the state board for career and technical education (IA Code 285.2)

The Iowa Department of Education is charged with carrying out the policies of the State by administering the education laws passed by the Iowa General Assembly and Congress. Another role of the Department is to provide leadership to local school districts, area education agencies, and community colleges that goes beyond the regulatory function of compliance with state or federal statutes or rules. That leadership is focused on the State Board of Education's stated goal for education in Iowa:

"To improve the level of learning, achievement and performance of ALL students so they will become successful members of their community and the workforce." The state is divided into education regions. In each region, area education agencies (AEAs) provide a basic core of services to K-12 districts, with some variations depending on the needs of the schools and students each serves. Funds for AEAs come from a combination of direct state aid, local property taxes, and various grants. The divisions within an AEA include: Special Education, Media Services and Educational Services. The board members are elected by and represent local district school Boards of Education. This system maintains the Iowa philosophy of local control through a structure that closely parallels that of local schools.

Boundaries of the AEAs were established to be coterminous with the boundaries of the merged area schools in 1974. Today, several AEAs have consolidated while the community college boundaries have remained reasonably stable since their creation. The community colleges of Iowa provide numerous campuses and instructional centers. These public postsecondary two-year institutions are organized as comprehensive community colleges. Each college serves a multi-county merged area, which may vary in size from four to twelve counties. All Iowans of postsecondary school age are eligible to attend any of the community colleges.

The Division of Community Colleges and Workforce Preparation is responsible for coordinating statewide efforts to fulfill the community colleges of Iowa's commitment to access, quality, and responsiveness. The Division does this through numerous partnerships among the community colleges, high schools, public and private four-year colleges, business, and labor. The Division is also responsible for adult education programs, coordinates secondary and postsecondary career education, and supervises veterans' and military education for postsecondary institutions.

One of the major responsibilities of the Division is career and technical education in Iowa. Programs and services provided by this Division include assistance with effective practices, program approval, technical assistance, funding, and career and technical student organizations. Educational consultants have responsibilities for state identified CTE service areas, as well as entrepreneurship, academics, articulation, cooperative education, corrections, gender equity, guidance and counseling, labor market materials, program evaluation, regional planning, Tech Prep, and special populations. Examples of career and technical student organizations are Business Professionals of America, DECA, Delta Epsilon Chi, FBLA, FCCLA, FFA, Health Occupations Students of America, Phi Beta Lambda, Postsecondary Agriculture Students, SkillsUSA and Technology Student Association.

Within the Department of Education, linkages are being built between academic and career education through the development of a Career Pathways Framework organized around six broad career areas. This will serve as a model or tool for local school improvement and will help ensure all students have the opportunity to explore careers.

The development of the Perkins IV State Transition Plan is a responsibility of the Iowa Department of Education, Division of Community Colleges and Workforce Preparation.

III. PROVISION OF SERVICES FOR SPECIAL POPULATIONS

A. Statutory Requirements

- 1. Describe the State's program strategies for special populations listed in Section 3(29) of the Act, including a description of how individuals who are members of the special populations---
 - (a) Will be provided with equal access to activities assisted under the Act.
 - (b) Will not be discriminated against on the basis of their status as members of special populations; and
 - (c) Will be provided with programs designed to enable the special populations to meet or exceed State adjusted levels of performance, and how you will prepare special populations for further learning and for high-skill, high-wage, or high-demand occupations. [Section 122(c)(9)(A)-(C)]
- a) The DE will describe how special population students will be provided with equal access to activities assisted under the Act.
 - A DE consultant is assigned at the state level to work with both secondary and postsecondary recipients regarding equal access of special populations and on promotion of nontraditional training and employment.
 - Continuation of the Special Populations Leadership Team that includes representatives from community colleges across the state, K-12, AEAs, corrections, vocational rehabilitation, and higher education. Participants have an interest in special population students and provide guidance, input, and support for statewide equity efforts to insure equal access to activities and programs.
 - Collection of data to evaluate access and achievement of the special population students.
 - Provide technical assistance and professional development to teachers, administrators, counselors, and curriculum staff at LEAs and community colleges to address access and achievement of special population students.
 - Convene community college equity and special population coordinators on a regular basis so there is sharing regarding successful strategies for serving special population students.
 - Continue to emphasize articulation between secondary and postsecondary programs regarding the importance of assisting special population students to transition from secondary and postsecondary education.
 - Promote development of secondary student individualized career planning with parent/significant adult input through dissemination of materials targeting this effort.
 - Continuation of partnerships with Iowa Workforce Development, the Department of Human Services, and the Iowa Commission on the Status of Women to promote nontraditional employment and training.
 - Continuation of an annual Community College Diversity Seminar that initiates the annual professional development series focusing on nontraditional training and equal access of special population students to employment.
 - Support the content of the *Diversity Iowa Website*, a resource for Iowa educators from kindergarten to postsecondary school in their efforts to recognize and reflect diversity in

- their classrooms and to provide students with a welcoming, supportive, and effective learning environment. The website will provide assistance in their efforts to promote nontraditional occupations.
- Provide information to secondary guidance counselors, student services personnel, and
 other individuals regarding the value of nontraditional occupations and strategies to
 promote them with students and parents at the local level, including media promotion of
 nontraditional employment.
- Provide strategies for career and technical student organizations to increase the involvement of students who are members of special populations.
- An amount not to exceed \$100,000 will be available to serve individuals in the state correctional institutions, both those serving youth and those serving adults. The funds available will be utilized to provide services to individuals who choose to enroll in CTE programs. State correctional institutions seeking the use of funds will submit an application responding to the requirements of the Perkins Act in the same manner as applicants applying for basic grant funds. In addition, institutions utilizing these federal funds will be responsible for maintaining and reporting performance measure data on all Perkins funded activities.
- b) The DE and the recipients will not discriminate against special population students on the basis of their status as members of special populations.
 - Local applicants will be required to sign an assurance that they will not discriminate and
 must also provide information regarding how equal access will be achieved. To assist in
 this, examples of strategies that promote nondiscrimination will be provided. Professional
 development activities provided by the DE and other agencies will assist recipients of
 Perkins funds to develop strategies to assure nondiscrimination.
- c) The recipients will provide programs designed to enable the special population students to meet or exceed state adjusted levels of performance and will prepare special populations for further learning and for high-skill, high-wage, or high-demand occupations. [Section 122(c)(9)(A)-(C)]
 - Recipients will clarify in the local application how they will be accountable for achievement of special population students, including nontraditional enrollment and graduation performance measures. Eligible recipients must develop an improvement plan if they fail to meet the adjusted state standards, including those for special populations.
 - The application will require recipients to describe how programs will be designed to assist special populations to meet or exceed the performance levels. DE staff will participate in and will help design staff development activities related to assisting special population students in order to provide technical assistance to eligible recipients.

- The application guidelines will explain the ramifications to recipients not meeting or exceeding the state levels of performance. To provide assistance to recipients, the DE will develop suggestions on how to identify high-skill, high-wage, or high-demand occupations at the regional level and how to assist students to obtain employment or further education.
- The Tech Prep application will require recipients to address promotion of nontraditional occupations and to describe strategies to be used in meeting the needs of students who are members of special populations.

IV. ACCOUNTABILITY AND EVALUATION

States that submit a one-year transition plan must submit all items in this section, except as noted in the box below. States that submit a six-year State plan must complete all items in this section.

States that submit a one-year transition plan, along with their eligible recipients, are <u>required to reach agreement on performance levels</u> for the first two program years (July 1, 2007 – June 30, 2008 and July 1, 2008 – June 30, 2009) <u>on only the core indicators</u> under section 113(b) of the Act as provided below:

	<u>Indicators</u>	Transition Plan	Six-Year Plan	
Secondary Level – 7 Indicators				
1S1 1S2	Academic Attainment – Reading/Language Arts Academic Attainment – Mathematics	X X	X X	
2S1	Technical Skill Attainment	Not required	X	
3S1	Secondary School Completion	Not required	X	
4S1	Student Graduation Rates	X	X	
5S1	Secondary Placement	Not required	X	
6S1	Nontraditional Participations and Completion	Not required	X	
Postsecondary/Adult Level – 5 Indicators				
1P1	Technical Skill Attainment	Not required	X	
2P1	Credential, Certificate, or Degree	Not required	X	
3P1	Student Retention and Transfer	Not required	X	
4P1	Student Placement	Not required	X	
5P1	Nontraditional Participation and Completion	Not required	X	
l				

States that submit a one-year transition plan must submit a five-year plan prior to the second program year. At that time, the Department will reach agreement on performance levels for program year two (July 1, 2008 – June 30, 2009) for the indicators that were not initially required. The Department will issue further guidance to States prior to the required submission of the five-year plan.

States that submit a transition plan, along with their eligible recipients, <u>will not be subject to sanctions</u> under sections 123(a) and (b) of the Act <u>for the first program year</u> for the core indicators that are not required as described above.

A. Statutory Requirements

1. Description of procedures that the eligible agency (State Board) will use to obtain input from eligible recipients in establishing measurement definitions and approaches for the core indicators of performance for career and technical education students at the secondary and postsecondary levels, as well as for any other additional indicators of performance identified by the eligible agency. [Sec. 113(b)(1)(A)-(B), sec. 113(b)(2)(A)-(C)]

State legislation (SF 449) requires career and technical programs be competency-based and that minimum competencies be identified at the state level. The process for developing competencies is established by sub-rule 281.46.7 (1) in the DE administrative rules and regulations. Local school districts and community colleges may elect to develop competencies in lieu of the state minimum competencies. A school district is provided the option of utilizing minimum competencies developed through a structured group interview process, involving a technical committee composed of incumbent workers within an occupational cluster of a service area. The law further requires the competencies be revalidated periodically. Iowa Code, Chapter 258.4(8) also requires the program sequence addresses the following: new and emerging technologies, job-seeking, job-keeping, and other employment skills, including self-employment and entrepreneurial skills, that reflect current industry standards, leadership skills, entrepreneurial, and labor-market needs; and the strengthening of basic academic skills. Perkins III also required programs eligible for federal funds include competency-based instruction, applied learning that contributes to the academic knowledge, higher-order reasoning and problem-solving skills, work attitudes, general employability skills, technical skills, and occupational-specific skills of an individual. Since the passage of SF 449, another major legislative initiative, HF 2272, has further shaped the model framework. School improvement focuses upon district identified and adopted standards and benchmarks. The process of State Accreditation of Community Colleges is utilized in the review of CTE programs, as well as a CTE program approval process for all new CTE programs proposed by the community colleges across the State.

The Department will convene a subcommittee of the Perkins Five-Year Planning committee to address the proposed measurement definitions and approaches for the core indicators of performance for career and technical education students at the secondary and postsecondary levels. The subcommittee will be composed of career and technical education practitioners and data reporting officers from eligible recipients at both the secondary and postsecondary levels, staff from the Division of Community Colleges and Workforce Preparation as well as Department of Education personnel that have assignments addressing performance indicators in other federal programs administered by the Department.

2. Description of the procedures that the eligible agency (State Board) will use to obtain input from eligible recipients in establishing a State adjusted level of performance for each of the core indicators of performance for career and technical education students at the secondary and postsecondary levels, as well as State levels of performance for any additional indicators of performance identified by the eligible agency. [Sec. 122(c)(10)(A), sec. 113(b)(3)(B)]

Data needed for the core indicators will be collected electronically by the State for both the secondary and postsecondary levels from the eligible recipients through the current data collection systems. Current performance levels for the indicators including those tied with ESEA performance (1S1, 1S2 and 4S1) are available through the state's Secondary Data collection system Project EASIER (Electronic Access System for Iowa Education Records). For the purposes of the adjusted levels of performance, the State will use the most recent aggregated eligible recipient data to determine a state baseline and project improvement for these levels.

The Department of Education's Project EASIER and Project Easier Plus CTE are initiatives involved in the transfer of individual student records, which include data on CTE programs. The mission of the projects is to reduce data burden, encourage better decision-making by establishing and maintaining a cost effective method of accessing and transferring accurate and timely education information among school districts, postsecondary institutions and the Iowa Department of Education.

3. The valid and reliable measurement definitions and approaches (on the forms in Part C) that the eligible agency (State Board) will use for each of the core indicators of performance for career and technical education students at the secondary and postsecondary/adult levels, as well as any additional indicators of performance identified by the eligible agency, that are valid and reliable. Including a description of how the proposed definitions and measures are valid and reliable. [Sec. 113(b)(2)(A)-(B)]

Section 113(b) of the Act describes the measures that a state must use for student attainment of challenging academic content standards and student academic achievement standards in reading/language arts and mathematics (1S1 and 1S2, respectively) and student graduation rates (4S1). These measures have been prepopulated on the FAUPL form.

See Column 2 in Tables 1 and 2 in the Part B.

4. Description of how, in the course of developing core indicators of performance and additional indicators of performance, the eligible agency (State Board) will align the indicators, to the greatest extent possible, so that information substantially similar to that gathered for other State and Federal programs, or for any other purpose, is used to meet the Act's accountability requirements. [Sec. 113(b)(2)(F)]

It is anticipated that OVAE will continue to utilize the CAR format to collect student attainment data from each state. Iowa will continue to align its implementation of Perkins IV with its efforts to implement ESEA legislation. Throughout the life of Perkins III, both programs defined a student as being academically proficient in the areas of math and reading if they scored at the 41st percentile (national norms) or higher on the math and reading assessment components of the Iowa Test of Educational Development. This alignment will continue into the implementation of Perkins IV. Iowa has the capability of tailoring our reporting to identify the student attainment in an individual program of study, as well as reporting on the consortium and career cluster level. The outcome of the student academic attainment measures will be evaluated on the state and recipient levels.

Per the description in item #1 the Department will convene a subcommittee of the Perkins Five-Year Planning committee to address the proposed measurement definitions and approaches for the core indicators of performance for career and technical education students at the secondary and postsecondary levels. The subcommittee will be composed of career and technical education practitioners from eligible recipients at both the secondary and postsecondary levels, as well as Department of Education personnel that have assignments addressing performance indicators in other federal programs administered by the Division of Community Colleges and Workforce Preparation within the Department of Education. This subcommittee will be given the charge of aligning performance indicators of other State and Federal programs to the greatest extend possible.

5. Description for the first two years covered by the State plan, performance levels for each of the core indicators of performance, except that States submitting one-year transition plans are only required to submit performance levels for part of the indicators as discussed above. For performance levels that are required, the States' performance levels, at a minimum, must be expressed in a percentage or numerical form, so as to be objective, quantifiable, and measurable; and require the State to continually make progress toward improving the performance of career and technical education students. [Sec. 113(b)(3)(A)(i)-(ii)]

Section 113(b)(2) of the Perkins Act requires a state to develop valid and reliable core indicators of performance, to propose performance levels in its state plan, and to reach agreement with the Department on "adjusted performance levels" for each of the core indicators. In so doing, the Perkins Act prescribes the measures that a state must use for some of the core indicators.

a. Section 113(b)(2)(A)(i) of the Perkins Act requires a state to measure career and technical education students' attainment of "challenging academic content standards" and "student academic achievement standards" that a state adopted pursuant to Section 1111(b)(1) of the ESEA. The Perkins Act further requires a state to use its state's academic assessments (i.e. the state's reading/language arts and mathematics tests) implemented under Section 1111(b)(3) of the ESEA to measure career and technical education students' attainment of these state standards. Thus, two of a state's core indicators must be career and technical education students' proficiency in reading/language arts and mathematics as measured under 1111(b)(1) and (3) of the ESEA. Accordingly, under the Perkins Act, a state must report the number or percent of its career and technical education students who score at the proficient level or above on the state's assessments in reading/language arts and mathematics administered under the ESEA to measure the academic proficiency of secondary career and technical education students against the ESEA standards.

To measure attainment of these two core indicators, a state must develop and reach agreement with the Department on "adjusted performance levels," which constitute the state's performance targets for a program year. Permissible targets (i.e. "adjusted performance levels") for these two core indicators would be a state's "annual measurable objectives" (AMOs) from its state's ESEA accountability workbook. (To ensure that a state's schools are making "adequate yearly progress" (AYP) as required under Section 1111(b)(2)(A) of the ESEA, Section 1111(b)(2)(G) of the ESEA requires a state to establish statewide AMOs, which identify a single minimum percentage of students who are required to meet or exceed the proficient level on the state's academic assessments each year.) Under the Perkins Act, a state may propose different performance levels (targets) for these two core indicators instead of its AMOs as discussed below.

Based on the above guidelines, Iowa has calculated 2005-2006 Perkins baseline data for academic achievement in reading/language arts and mathematics as provided in Section 1111(b)(1) and (3) of ESEA and performance targets on Table 1 in Part C.

b. Section 113(b)(2)(A)(iv) of the Perkins Act requires a state to identify a core indicator to measure for its career and technical education students at the secondary level "student graduation rates (as described in Section 1111 (b)(2)(C)(vi) of the [ESEA])." Thus, a state must report the number or percent of its career and technical education students whom the state includes as graduated in its graduation rate described under the ESEA. To ensure that a state's schools are making AYP as required under Section 1111(b)(2)(A) of the ESEA, some states have established statewide AMOs for graduation rates under Section 1111(b)(2)(C)(vi), and others states have defined AYP only to require improvement in the graduation rate each year.

The Department strongly encourages your state to reach agreement on "adjusted performance levels" required under Section 113 of the Perkins Act for the three core indicators discussed in (a) and (b) above that are the same as your state's AMOs that your state adopted to ensure that your state's schools are making AYP as required under

Section 1111(b)(2) of the ESEA. However, as noted above, your state may not have established AMOs for graduations rates under the ESEA, or your state may wish to propose performance levels for these core indicators that are different from your state's AMOs. If so, your state must provide baseline data using your state's most recent year's achievement data or graduation rate under the ESEA, propose performance levels, and reach agreement with the Department on "adjusted performance levels." (The Secretary is considering whether to issue regulations requiring a state to agree to "adjusted performance levels" under the Perkins Act that are the same as the state's AMOs or targets for graduation rate under the ESEA. If the Secretary decides to regulate on this issue and adopts final rules, a state may be required to amend its state plan.)

Table 1 (4S1) provides in section 1111(b)(2)(A) of ESEA performance targets for high school graduation. Graduation rates for Career and Technical Education concentrators are unavailable at this time because of changes in secondary reporting requirements in Project Easier CTE Plus.

See Column 2 in Tables 1 and 2 in Part C.

6. Description of the eligible agency's (State Board) process for reaching agreement on local adjusted levels of performance if an eligible recipient does not accept the State adjusted levels of performance under section 113(b)(3) of the Act. [Sec. 113(b)(4)(A)(i); sec. 122(c)(10)(B)]

Upon approval of the performance indicators by the federal Department of Education, the state Department of Education will, to the greatest extent possible, provide each eligible recipient with baseline data. These data will be used to reach an agreement regarding the eligible recipients adjusted levels of performance. All eligible recipients will reach an agreement on the local adjusted level of performance using these data. The Perkins Act provides the eligible recipient the opportunity to accept the state agreed levels of performance. Where this option is accepted, the eligible recipient will be held accountable to the state agreed levels of performance and not the agreed levels based on the most recent data available.

The Department of Education will provide each eligible recipient with the most recent data that was reported to the state on their behalf. These data will be used in the negotiation process to reach an agreement on the recipient's agreed to targeted level for performance on each indicator. Recipients will have the opportunity to accept the state agreed level of performance for a given indicator or a performance level that demonstrate improvement per the most recent baseline data.

7. Description of the objective criteria and methods eligible agency (State Board) will use to allow an eligible recipient to request revisions to its local adjusted levels of performance if unanticipated circumstances arise with respect to an eligible recipient. $[Sec.\ 113(b)(4)(A)(vi)]$

On an annual basis, the eligible recipient will have the opportunity to request a review of their agreed levels of performance. This request will be made during the application process. Upon a request for review of their local agreed levels of performance, the following method will be utilized.

- The eligible recipient will provide a written rationale to why and to what extent the local agreed levels of performance should be adjusted.
- The eligible recipient will provide data that supports the request to adjust their local levels of performance.
- The state department of education will review the request and negotiate with the eligible recipient to make any adjustment to their agreed levels of performance.
- 8. Description of the eligible agency (State Board) will report data relating to students participating in career and technical education programs in order to adequately measure the progress of the students, including special populations and students participating in Tech Prep programs, if applicable, and how the agency will ensure that the data reported from local educational agencies and eligible institutions, and the data that the agency reports to the Secretary, are complete, accurate, and reliable. [Sec. 122(c)(13); sec. 205]

Data will be collected electronically by the State for both the secondary and postsecondary levels.

The Department of Education's Management Information System (MIS) is the source, which the State utilizes to obtain input from eligible recipients at the postsecondary level. The purpose of the MIS is "...to collect data electronically from the community colleges to provide information about credit and non-credit students, credit student awards, programs and courses, human resources, and community college finances, and improvement and accountability of the system." The Department of Education conducts a multi-step process to ensure accuracy and reliability. An annual reporting manual is issued to ensure statewide reporting standards and definitions. Once data is submitted internal edits are conducted to identify reporting errors with the file layout or data elements. A summary report of the data submission is created and sent to the eligible recipient's administration for confirmation. Once confirmed by the eligible recipient, Department of Education staff further reviews the data to compare with previous years and identify possible issues to be resolved.

The Department of Education's Project EASIER (Electronic Access System for Iowa Education Records) and Project Easier Plus CTE are initiatives involved in the transfer of individual student records, which include data on CTE programs. The mission of the projects is to reduce data burden, encourage better decision-making by establishing and maintaining a cost effective method of accessing and transferring accurate and timely education information among school districts, postsecondary institutions and the Iowa Department of Education. The Department of Education Project EASIER staff conducts a multi-step process to ensure accuracy and reliability. An annual reporting manual is issued to ensure statewide reporting standards and definitions. Electronic data submission allows for the file to be filtered for errors and rejected if errors are detected. This filter will also

issue warnings to indicate possible "out of bounds" responses. A summary report of the data submission is created and available for the eligible recipient's administration to certify. Once certified by the eligible recipient, Project EASIER staff further reviews the data to compare with previous years and identify possible issues to be resolved.

Underlying principles of the projects include a commitment toward reduction of paper-based state reporting, building on existing technologies available to schools, a commitment toward the elimination of paper-based college transcripts, the adoption of a common basis for facilitating meaningful information exchange, and greater security of confidential student information.

9. Description of how the eligible agency (State Board) plans to enter into an agreement with each consortium receiving a grant under Perkins IV to meet a minimum level of performance for each of the performance indicators described in section 113(b) and 203(e) of the Act. [Sec. 204(e)(1)]

The annual grant letter approval that is issued to each local recipient, including consortia, will include specific language describing the agreed upon performance levels for the program year of the grant for each indicator as described in section 113(b) and 203(e) of the Act. These performance levels will then be entered in the recipient's (and each subrecipients in the case of a consortium) specific web-based (Project EASIER plus CTE) reporting document for that given program year.

10. Description of how the eligible agency (State Board) will annually evaluate the effectiveness of career and technical education programs, and describe, to the extent practicable, how you are coordinating those programs with other Federal programs to ensure non-duplication. [Sec. 122(c)(8)]

State legislation passed in 1992 (SF 449) requires career and technical programs be competency based and that minimum competencies be identified at the State level. The process for developing competencies is established by sub-rule 281.46.7 (1) in the DE administrative rules and regulations. Local school districts and community colleges may elect to develop competencies in lieu of the state minimum competencies. A school district is provided the option of utilizing minimum competencies developed through a structured group interview process, involving a technical committee composed of incumbent workers within an occupational cluster of a service area. The law further requires that the competencies be revalidated periodically. Iowa Code, chapter 258.4 (8) also requires that the program sequence addresses the following: new and emerging technologies, jobseeking, job-keeping, and other employment skills, including self-employment and entrepreneurial skills, that reflect current industry standards, leadership skills, entrepreneurial, and labor-market needs; and the strengthening of basic academic skills. Perkins III also required that programs eligible for federal funds include competency-based instruction, applied learning that contributes to the academic knowledge, higher-order reasoning and problem-solving skills, work attitudes, general employability skills, technical skills and occupational-specific skills of an individual. Since the passage of SF 449, another major legislative initiative, HF 2272, has further shaped the model framework. School

improvement focuses upon district identified and adopted standards and benchmarks. The process of State Accreditation of Community Colleges is utilized in the review of CTE programs as well as a CTE program approval process for all new CTE programs proposed by the community colleges across the State.

The Iowa code 258.4(7) requires LEAs and community colleges to conduct an annual review of at least 20% of the approved career and technical programs. At the secondary and postsecondary levels, the Department of Education confirms the compliance of these requirements and use of evaluation data for program improvement purposes through the LEA and community college accreditation and review process.

The Director of the Iowa Department of Education meets on a regular basis with other Iowa Department Directors to coordinate interagency activities and cooperative initiatives; additionally, a CTE consultant serves as the Department's liaison with the Iowa Workforce Development (IWD) and attends the IWD Board's monthly meetings; the State Board of Education and the IWD Board are initiating a joint meeting in 2007. The DE and IWD have jointly developed and disseminated career information resources and instructional tools to our schools. The Division also coordinates the Adult Basic Education and Family Literacy Grant, strengthening the linkage between CTE and basic education and GED programs. Iowa has been successful in conducting a data match between the administrative records (UI) records of IWD and the community college MIS; both agencies are jointly supporting an enhanced administrative records match capability for the state.

A. Other Department Requirements

- 1. Except as noted above with respect the States submitting one-year transition plans, you must provide all the information requested on the forms provided in Part C of this guide to report accountability data annually to the Secretary under section 113(c)(1)-(2), including:
 - (a) The definitions that the eligible agency (State Board) will use for "participants," "concentrators," and "completers" in the core indicators of performance for both secondary and postsecondary/adult levels;
 - (b) Baseline data for the core indicators of performance under section 113(b)(2) using data from the most-recently completed program year (July 1, 2005 June 30, 2006)
 - (c) Proposed performance levels as discussed above, except that, for the indicators for which your State must your State's standards, assessments, and graduation rates adopted under Title I of the ESEA, if your State chooses to use its AMOs under the ESEA, you will only have to confirm this information with your Regional Accountability Specialist. Upon your request, the Regional Accountability Specialist will pre-populate the forms in Part C with your State's AMOs for the

- 2007-08 and 2008-09 program years and send the forms for you to finish completing.
- (d) Proposed performance levels as discussed above, except that, for the indicators for which your State must your State's standards, assessments, and graduation rates adopted under Title I of the ESEA, if your State chooses to use its AMOs under the ESEA, you will only have to confirm this information with your Regional Accountability Specialist. Upon your request, the Regional Accountability Specialist will pre-populate the forms in Part C with your State's AMOs for the 2007-08 and 2008-09 program years and send the forms for you to finish completing.

V. TECH PREP PROGRAMS

A. Statutory Requirements

1. Describe the competitive basis or formula you will use to award grants to Tech Prep consortia. [Sec. 203(a)(1)]

Each of the 15 area consortia of the state will receive a basic allocation of \$50,000. The balance awarded to each consortium will be based on the number of local education agencies in the area that choose to participate in the consortium. Superintendents of all secondary districts in each area must sign an affidavit regarding their choice to participate in the consortium. Ninety-five percent (95%) of the Tech Prep funds will be awarded to consortia in this manner. The remaining five percent (5%) will be used for administration at the state level.

Evaluation of Tech Prep consortia activities will include measurement of the increases in establishment of "Programs of Study" within a region. Where little progress is shown, the state reserves the right to reduce the allocation to the consortium and distribute funds to other consortia as a means to effectively develop Tech Prep programs.

B. Other Department Requirements

1. Submit a copy of the local application form(s) used to award Tech Prep funds to consortia and a copy of the technical review criteria used to select winning consortia, if funds are awarded competitively.

Refer to Appendix D for the Tech Prep Application.

Refer to Appendix E for the Review Criteria to evaluate the Tech Prep application.

2. Provide a list of the consortia that the state expects to fund and the estimated or projected level of funding for each consortium.

Refer to Appendix F.

VI.FINANCIAL REQUIREMENTS

A. Statutory Requirements

1. Description of how the recipient agency (State Board) will allocate funds it receives through the allotment made under section 111 of the Act, including any funds that it chooses to consolidate under Section 202(2) of the Act, will be allocated among career and technical education at the secondary level, or career and technical education at the postsecondary and adult level, or both, including the rationale for such allocation. [Sec. 122(c)(6)(A); Sec. 202(c)]

The Transition Plan continues the formula for distribution of funds between the two sectors that was implemented by the state per the Perkins III legislation. The formula for the funds received through Perkins III was based on input from a taskforce composed of administrators of secondary school districts and community colleges. Three factors are utilized to determine the distribution of funds received through Section 112 (1)(a) to the two sectors. The factors gave consideration to the enrollments (contact hours) in career and technical education programs in each of the sectors, the costs incurred by each sector to operate the programs, and the factors (population data) utilized by the U.S. Department of Education to distribute Career and Technical Education Assistance to the States. These factors were selected because together they provided a means to give full consideration to the comprehensive nature of career and technical educational programs and the needed investment of additional resources in both sectors to enable the achievement of the state's vision for its Career and Technical Education system.

The distribution of funds between the two sectors is based on the following formula:

- One-third (1/3) of the funds is distributed based upon the proportional share of the total contact hours generated by the career and technical education programs in each sector.
- One-third (1/3) of the funds is distributed based upon the proportional share of the total operation costs incurred by each sector to conduct career and technical education programs.
- One-third (1/3) of the funds is distributed based upon the federal method of calculating each state's share of the total federal appropriation. The portion of funds that have awarded to state for the population group for ages 15-19 will be awarded to the secondary sector and the balance of the funds will be awarded the post-secondary sector.

Based on the formula described above, 56 percent of the funds received in Section 112(1)(a) will be distributed to the secondary sector and 44 percent of the funds will be distributed to the postsecondary sector.

2. List of allocations made available by the eligible agency (State Board) for career and technical education programs under Section 131(a)-(e) of the Act and description of how these allocations are distributed to local educational agencies, area career and technical education schools, and educational service agencies within the State. [Section 131(g)]

The attached allocation table and community college region summary tables (Appendix G) documenting the data utilized to develop each portion of the allocation and the total allocation for each district, will be distributed to Perkins contact persons and the chief administrator of each local educational agency and FY 07 Perkins fiscal agency in mid-April, 2007 via an electronic transmittal. This transmittal will also include the local FY 08 Perkins application and the instructions for completing the application. This will be augmented with an on-site technical assistance meeting in each community college region of the state.

3. Description of how the recipient agency (State Board) will allocate any of those funds among any consortia that will be formed among secondary schools and eligible institutions, and how funds will be allocated among the members of the consortia, including the rationale for such allocation. [Sec. 122(c)(6)(B); Sec. 202(c)]

Funds distributed to a consortium must be used to benefit all members. As required by the Perkins Act, funds may not be returned to a member of the consortium based upon their contribution to the total consortium allocation. Decisions about fund distribution to members of the consortium will be made based upon a plan all members of the consortium develop.

4. Description of how the recipient agency will adjust the data used to make the allocations to reflect any change in school district boundaries that may have occurred since the population and/or enrollment data was collected, and include local educational agencies without geographical boundaries, such as charter schools and secondary schools funded by the Bureau of Indian Affairs. [Sec. 131(a)(3)]

Section 131.a.3 of Perkins IV states:

ADJUSTMENTS—Each eligible agency, in making the allocations under paragraphs (1) and (2), shall adjust the data used to make the allocations to—

- (A) reflect any change in school district boundaries that may have occurred since the data were collected; and
- **(B)** include local educational agencies without geographical boundaries, such as charter schools and secondary schools funded by the Bureau of Indian Affairs.

When district boundaries change, the Department will do the following:

- 1. When districts merge after population and enrollment data has been collected, the Department will combine the population and/or enrollment data for the merging districts.
- 2. When a district dissolves after population and enrollment data has been collected, the Department will split the enrollment of the dissolving district between the receiving district(s) based on data obtained from the School Finance Team.

The Department will obtain enrollment data from the Bureau of Planning, Research and Evaluation for local educational agencies without geographical boundaries and include those figures when making allocations.

5. Description of any proposed alternative allocation formula(s) requiring approval by the Secretary as described in Section 131(b) or 132(b) of the Act. At a minimum, you must provide an allocation run for eligible recipients using the required elements outlined in Section 131(a) and/or Section 132(a)(2) of the Act, together with an allocation run using the proposed alternative formula(s). Also you must include a demonstration that the alternative secondary formula more effectively targets funds on the basis of poverty, as described in Section 131(b)(1) of the Act; and/or, in the case of an alternative postsecondary formula, a demonstration that the formula described in Section 132(a)(2) of the Act does not result in a distribution of funds to eligible recipients that have the highest numbers of economically disadvantaged individuals and that an alternative formula would result in such a distribution.

No alternative allocation formula is proposed.

B. Other Department Requirements

1. Submit a detailed project budget, using the forms provided in Part B of this guide.

See attached detailed budget based on preliminary estimates posted by the U.S. Department of Education's Budget Service on February 5, 2007 in Part B.

2. Provide a listing of allocations made to consortia (secondary and postsecondary) from funds available under Sections 112(a) and (c) (reserve) of the Act.

See attached list of estimated allocations in Appendix H.

- 3. Description of the secondary and postsecondary formulas used to allocate funds available under Section 112(a) of the Act, as required by Section 131(a) and 132(a) of the Act.
 - a. <u>Distribution of Reserve Funds to Eligible Recipients (Section 112a)</u>
 Funds received through this Section (112a) will be distributed to postsecondary eligible recipients on a formula basis. Each recipient will be eligible to receive a grant of up to \$10,000.
 - b. <u>Distribution of Funds to Secondary Education Programs (Section 131)</u>
 Funds received through this Section (131) will be allocated to local educational agencies within the state as follows:

Thirty percent (30%) will be allocated to such local educational agencies in the proportion to the number of individuals aged five through 17, inclusive, who reside in the school district served by such local educational agency for the preceding fiscal year compared to the total number of such individuals who reside in the school districts determined on the basis of the most recent satisfactory data provided to the secretary by the Bureau of the

Census for the purpose of determining eligibility under Title I of the Elementary and Secondary Education Act of 1965.

Seventy percent (70%) of the funds will be allocated to each local educational agencies in proportion to the number of individuals aged 5 through 17, inclusive, who reside in the school district served by such local educational agency and are from families below the poverty level for the preceding fiscal year, as determined on the basis of the most recent satisfactory data used under section 1124(c)(1)(A) of the Elementary and Secondary Education Act of 1965, compared to the total number of such individuals who reside in school districts served by all of the local educational agencies in the state for such preceding fiscal year.

c. <u>Distribution of Funds to Postsecondary Education Programs (Section 132)</u>

Each community college or consortium of community colleges will be allocated an amount that bears the same relationship to the portion of funds made available under Section 112(a)(1) for the postsecondary sector as the sum of the number of individuals who are Federal Pell Grant recipients and recipients of assistance from the Bureau of Indians Affairs enrolled in career-technical or college parallel/career option programs. Funds made available for a given fiscal year will be allocated base on the sum of the number of such recipients enrolled in such programs in the preceding fiscal year.

A consortium of community colleges will be required to operate joint projects that provide services to all postsecondary institutions participating in the consortium and mutually beneficial to all members of the consortium. Such funds will not be reallocated to individual members of the consortium for purposes of programs benefiting only one member of consortium. Consortia will also be required to describe in their application for funds the process they will utilize to allocate funds within the consortium.

4. Description of the competitive basis or formula to be used to award reserve funds under Section 112(c) of the Act.

Reserve funds will be made available to community colleges on a formula basis. (Refer to Appendix G)

5. Description of the procedures used to rank and determine eligible recipients seeking funding under Section 112(c) of the Act.

The eligible recipient will be ranked based on the college's percentage of career and technical education students. The colleges with the highest percentage of career and technical education students would be ranked the highest. Reserve funds will be made available on a regional basis to community colleges that propose to advance the academic core in support of career and technical education programs linked to economic development priorities of the state (i.e., Information Technology, Bioscience/Biotechnology, and Advanced Manufacturing)

.

6. Description of the procedures to be used to determine eligible recipients in rural and sparsely populated areas under Section 131(c)(2) or 132(a)(4) of the Act.

All eligible local education agencies because of their close proximity to other local educational agencies have been able to join a consortium and access services funded by their Perkins allocation. Thus no additional procedures are proposed to address rural and sparsely populated areas.

VIII. EDGAR CERTIFICATIONS AND OTHER ASSURANCES

A. EDGAR Certifications

- 1. Provide a written and signed certification that----
 - (a) The plan is submitted by the State agency that is eligible to submit the plan [34 CFR 76.104(a)(1)] [Note: The term 'eligible agency' means a State board designated or created consistent with State law as the sole State agency responsible for the administration, or the supervision of the administration, of career and technical education in the State. (Sec Sec.3(12).)
 - (b) The State agency has authority under State law to perform the functions of the State under the program. (34 CFR 76.104(a)(2))
 - (c) The State legally may carry out each provision of the plan. (34 CFR 76.104(a)(3))
 - (d) All provisions of the plan are consistent with State law. (34 CFR 76.104(a)(4))
 - (e) A State officer, specified by title in the certification, has authority under state law to receive, hold, and disburse federal funds made available under the plan. (34 CFR 76.104(a)(5)) Note: If a state wishes the Department to continue sending the grant award documents directly to the state director, this individual's title needs to be listed on this portion of the assurance.
 - (f) The state officer who submits the plan, specified by title in the certification, has authority to submit the plan. (34 CFR 76.104(a)(6))
 - (g) The agency that submits the plan has adopted or otherwise formally approved the plan. (34 CFR 76.104(a)(7))

As established by Iowa Code Section 256.1 (and provided in detail by this plan in B2, Program Administration, the State Board of Education has the authority to develop, submit the state plan, and carry out the functions of the state plan, and disburse funds.

B. Other Assurances

- 1. Submit a copy of the State plan into the State Intergovernmental Review Process. (Executive Order 12372; 34 CFR 79)
- 2. Provide a complete and signed ED Form 80-0013 for certifications regarding lobbying; debarment and suspension, and other matters; and drug-free workplace requirements. (See http://www.ed.gov/policy/fund/guid/gposbul/gpos12.html)
- 3. Provide a complete and signed Assurance for Non-Construction Programs Form. (See http://wdcrobiis08/doc_img/sf424b.doc)
- 4. Provide a signed assurance that you will comply with the requirements of the act and the provisions of the State plan, including the provision of a financial audit of funds received under the Act which may be included as part of an audit of other Federal or State programs. (Section 122(c)(11))

- 5. Provide a signed assurance that none of the funds expended under the Act will be used to acquire equipment (including computer software) in any instance in which such acquisition results in a direct financial benefit to any organization representing the interests of the acquiring entity or the employees of the acquiring entity, or any affiliate of such an organization. (Section 122(c)(12))
- 6. Provide a signed assurance that your state will waive the minimum allocation as required in Section 131(c)(1) in any case in which the local educational agency is located in a rural, sparsely populated area or is a public charter school operating secondary school career and technical education programs and demonstrates that it is unable to enter into a consortium for purposes of providing services under the Act. (Section 131(c)(2))
- 7. Provide a signed assurance that your state will provide, from non-federal sources for the costs the eligible agency incurs for the administration of programs under this Act, an amount that is not less than the amount provided by the eligible agency from non-federal sources for such costs for the preceding fiscal year (Section 323(a))
- 8. Provide a signed assurance that your state and eligible recipients that use funds under this Act for in-service and pre-service career and technical education professional development programs for career and technical education teachers, administrators, and other personnel shall, to the extent practicable, upon written request, permit the participation in such programs and technical education secondary school teachers, administrators, and other personnel in nonprofit private schools offering career and technical secondary education programs located in the geographical area served by such eligible agency or eligible recipient. (Section 317(a))

PART B: BUDGET FORMS

PERKINS IV BUDGET TABLE - PROGRAM YEAR 1 (For Federal Funds to Become Available Beginning on July 1, 2007)

C. I. TITLE I: CAREER AND TECHNICAL EDUCATION ASSISTANCE TO STATES

A. Total Title I Allocation to the State	\$12,163,243
B. Amount of Title II Tech Prep Funds to Be Consolidated with Title I Funds	\$ 0
C. Total Amount of Combined Title I and Title II Funds to be distributed under section 112 (<i>Line A + Line B</i>)	\$ 12,163,243
D. Local Formula Distribution (not less than 85%) (Line C x 85%)	\$10,338,757
1. Reserve (not more than 10% of Line D)	\$ 150,000
a. Secondary Programs (0% of $Line D$)	\$ 0
b. Postsecondary Programs (100% of $Line D$)	\$ 150,000
2. Available for formula allocations (Line D minus Line D.1)	\$ 10,188,757
a. Secondary Programs (56% of Line D.2)	\$ 5,705,704
b. Postsecondary Programs (44% of Line D.2)	\$ 4,483,053
E. Leadership (not more than 10%) (Line C x 10%)	\$ 1,216,324
a. Nontraditional Training and Employment (\$ 100,000)b. Corrections or Institutions (\$ 100,000)	
F. State Administration (not more than 5%) (Line C x 5%)	\$ 608,162
G. State Match (from non-federal funds) ¹	\$ 608,162

_

The eligible agency must provide non-Federal funds for State administration of its Title I grant in an amount not less than the amount it provided in the preceding year.

PERKINS IV BUDGET TABLE - PROGRAM YEAR 1 (For Federal Funds to Become Available Beginning on July 1, 2007)

II. TITLE II: TECH PREP PROGRAMS A. Total Title II Allocation to the State \$1,245,235 B. Amount of Title II Tech Prep Funds to Be Consolidated with Title I Funds **\$0** C. Amount of Title II Funds to Be Made Available For Tech-Prep (Line A less Line B) \$1,245,235 D. Tech-Prep Funds Earmarked for Consortia \$1,182,973 a. Percent for Consortia (Line D divided by Line C) [95 %] b. Number of Consortia 15 c. Method of Distribution (check one): X Formula __ Competitive E. Tech-Prep Administration \$62,262 a. Percent for Administration

(Line E divided by Line C) [5 %]

PART C: ACCOUNTABILITY FORMS

Student Definitions

A. Secondary Level

Investors -

Not Applicable

Concentrators -

Career and Technical Education Concentrator for a Secondary Program:

A secondary career and technical education concentrator is a student who has a combination of completed and presently enrolled career and technical education units totaling at least two career and technical education units (two years) in the career and technical education program being reported.

B. Postsecondary/Adult Level

Concentrators -

Career and Technical Education Concentrator in a Postsecondary Program:

A postsecondary career and technical education concentrator is a student who has a combination of completed and presently enrolled in technical courses representing a full semester/quarter load in the career and technical education program being reported.

TABLE 1

FINAL AGREED UPON PERFORMANCE LEVELS FORM (FAUPL)

SECONDARY LEVEL

Column	Column	Column	Column	Column	Column
1	2	3	4	5	6
Indicator &	Measurement	Measurement	Baseline	Year One	Year Two
Citation	Definition	Approach	7/1/05- 6/30/06	7/1/07- 6/30/08	7/1/08- 6/30/09
1S1 Academic Attainment – Reading/Language Arts 113(b)(2)(A)(i)	Numerator: Number of high school eleventh graders who are concentrators and have met the proficient or advanced level on the Statewide high school reading/language arts assessment administered by the State under Section 1111(b)(3) of the ESEA.	State and Local Administrative Records via Project EASIER Plus CTE	B: 71.63 %	L: 79.3% A:	L: 79.3 % A:
	Denominator: Number of high school junior who are concentrators who took the ESEA assessments in reading/language arts assessment administered by the State under Section 1111(b)(3) of the ESEA.				
1S2 Academic Attainment - Mathematics 113(b)(2)(A)(i)	Numerator: Number of high school eleventh graders who are concentrators and have met the proficient or advanced level on the Statewide high school mathematics assessment administered by the State under Section 1111(b)(3) of the ESEA.	State and Local Administrative Records via Project EASIER Plus CTE	B: 75.33%	L: 79.3% A:	L: 79.3% A:
	Denominator: Number of high school junior who are concentrators who took the ESEA assessments in mathematics assessment administered by the State under Section 1111(b)(3) of the ESEA.				

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Indicator & Citation	Measurement Definition	Measurement Approach	Baseline 7/1/05- 6/30/06	Year One 7/1/07- 6/30/08	Year Two 7/1/08- 6/30/09
2S1 Technical Skill Attainment 113(b)(2)(A)(ii)	Numerator: Number of completers who were assessed in an identified or selected third party assessment and met the proficient or advanced level.	State and Local Administrative Records via Project EASIER Plus CTE	B: Not available	L: A:	L: A:
	Denominator: Number of completers who were assessed in an identified or selected third party assessment				
3S1 Secondary School Diploma 113(b)(2)(A)(iii)(I)	Numerator: Number of completers who left high school in the reporting year and received a secondary school Diploma.	State and Local Administrative Records via Project EASIER Plus CTE	B: Not available	L: A:	L: A:
	Denominator: Number of completers who left high school in the reporting year.				
3S2 GED or Other State- Recognized Equivalent	Numerator: Number of completers who left high school in the reporting year and received a General Education Development (GED) Diploma.	State and Local Administrative Records via Project	B: Not available	L: A:	L: A:
113(b)(2)(A)(iii)(II)	Denominator: Number of completers who left high school in the reporting year.	EASIER Plus CTE			

3S3	Numerator: Number of completers who	State and Local			
Diploma & Other	left high school in the reporting year and	Administrative	B: Not	L:	L:
Credential	received a proficiency credential in	Records via	available		
113(b)(2)(A)(iii)(III)	conjunction with a secondary school	Project		A:	A:
	diploma.	EASIER Plus			
		CTE			
	Denominator: Number of completers				
	who left high school in the reporting				
	year.				

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Indicator & Citation	Measurement Definition	Measurement Approach	Baseline 7/1/05- 6/30/06	Year One 7/1/07- 6/30/08	Year Two 7/1/08- 6/30/09
4S1 Student Graduation Rates 113(b)(2)(A)(iv)	Numerator: Number of concentrators reported as graduated using Iowa's approved calculation for graduation rate as defined in Iowa's ESEA accountability workbook. Denominator: Number of concentrators who have left secondary education in the reporting year.	State and Local Administrative Records via Project EASIER Plus CTE	B: Not available	L: 90.3% A:	L: 91.3% A:
5S1 Secondary Placement 113(b)(2)(A)(v)	Numerator: Number of completers who have left secondary education in the reporting year and were placed in continuing education, non-military employment, or the military. Denominator: Number of completers who have left secondary education in the reporting year	State and Local Administrative Records via Project EASIER Plus CTE	B: 95.62%	L: A:	L: A:
6S1 Nontraditional Participation 113(b)(2)(A)(vi)	Numerator: Number of students in the under- represented gender group enrolled in programs that lead to employment in non-traditional (gender-based) fields Denominator: Number of students enrolled in programs that lead to employment in non-traditional (gender-based) fields	State and Local Administrative Records via Project EASIER Plus CTE	B: 34.00%	L: A:	L: A:

6S2	Numerator: Number of students in	State and Local			
Nontraditional	under- represented gender group who	Administrative	B: 29.61%	L:	L:
Completion	completed a program that lead to	Records via			
113(b)(2)(A)(vi)	employment in non-traditional (gender-	Project		A:	A:
	based) fields	EASIER Plus			
		CTE			
	Denominator: Number of students who				
	completed a program that lead to				
	employment in non-traditional (gender-				
	based) fields				

TABLE 2

FINAL AGREED UPON PERFORMANCE LEVELS FORM (FAUPL)

POSTSECONDARY LEVEL

Column	Column	Column	Column	Column	Column
1	2	3	4	5	6
Indicator &	Measurement	Measurement	Baseline	Year One	Year Two
Citation	Definition	Approach	7/1/05-	7/1/07-	7/1/08-
			6/30/06	6/30/08	6/30/09
1 P 1	Numerator: Number of completers in	State and Local			
Technical Skill	the reporting year who were assessed in	Administrative	B: Not	L:	L:
Attainment	an identified or selected third party	Records via	Available		
113(b)(2)(B)(i)	assessment and met the proficient or	Community		A:	A:
	advanced level	College			
		Management			
	Denominator: Number of completers	Information			
	in the reporting year who were assessed	System			
	in an identified or selected third party	•			
	assessment				
2P1	Numerator: Number of completers in	State and Local			
Industry	the reporting year who were awarded an	Administrative	B: 99.74%	L:	L:
Certificate	industry-recognized credential,	Records via			
Attainment	certificate, or a degree	Community		A:	A:
113(b)(2)(B)(ii)	_	College			
	Denominator: Number of completers	Management			
	in the reporting year	Information			
		System			

		-			
3P1	Numerator: Number of completers who	State and Local			
Student Retention	were retained in postsecondary education	Administrative	B: Not	L:	L:
113(b)(2)(B)(iii)	or transferred to a baccalaureate degree	Records via	Available		
	program	Community		A:	A:
		College			
	Denominator: Number of program	Management			
	completers in the reporting year	Information			
		System and the			
		National			
		Student			
		Clearinghouse			
4P1	Numerator: Number of completers who	State and Local			
Student Placement	left the college in the reporting year and	Administrative	B: 99.00%	L:	L:
113(b)(2)(B)(iv)	were placed in continuing education,	Records via			
	non-military employment or the military.	Community		A:	A:
		College			
	Denominator: Number of program	Management			
	completers who left the college in the	Information			
	reporting year	System and the			
		National			
		Student			
		Clearinghouse			

Column	Column 2	Column 3	Column	Column 5	Column 6
Indicator & Citation	Measurement Definition	Measurement Approach	Baseline 7/1/05- 6/30/06	Year One 7/1/07- 6/30/08	Year Two 7/1/08- 6/30/09
5P1 Nontraditional Participation 113(b)(2)(B)(v)	Numerator: Number of students in the under- represented gender group enrolled in programs that lead to employment in non-traditional (gender-based) fields Denominator: Number of students enrolled in programs that lead to employment in non-traditional (gender-based) fields	State and Local Administrative Records via Community College Management Information System	B: 23.32%	L: A:	L: A:
5P2 Nontraditional Completion 113(b)(2)(B)(v)	Numerator: Number of students in under- represented gender group who completed a program that lead to employment in non-traditional (genderbased) fields Denominator: Number of students who completed a program that lead to employment in non-traditional (genderbased) fields	State and Local Administrative Records via Community College Management Information System	B: 15.35%	L: A:	L: A:

The eligible agency must provide non-Federal funds for State administration of its Title I grant in an amount not less than the amount it provided in the preceding year.

Appendix A

Appendix A: Program Status Assessment

Current Program Status Assessment

Each eligible recipient accepting a Perkins Allocation, to be used independently or to be allocated to a consortium, as part of this Local Application is to respond to the following items:

Table 2 -	Current	Program	Status
-----------	---------	----------------	---------------

District / Community College	Program

Identify the current status of implementation for each characteristic *by circling the appropriate response* rated 1 through 4 that best describes the current status of each item..

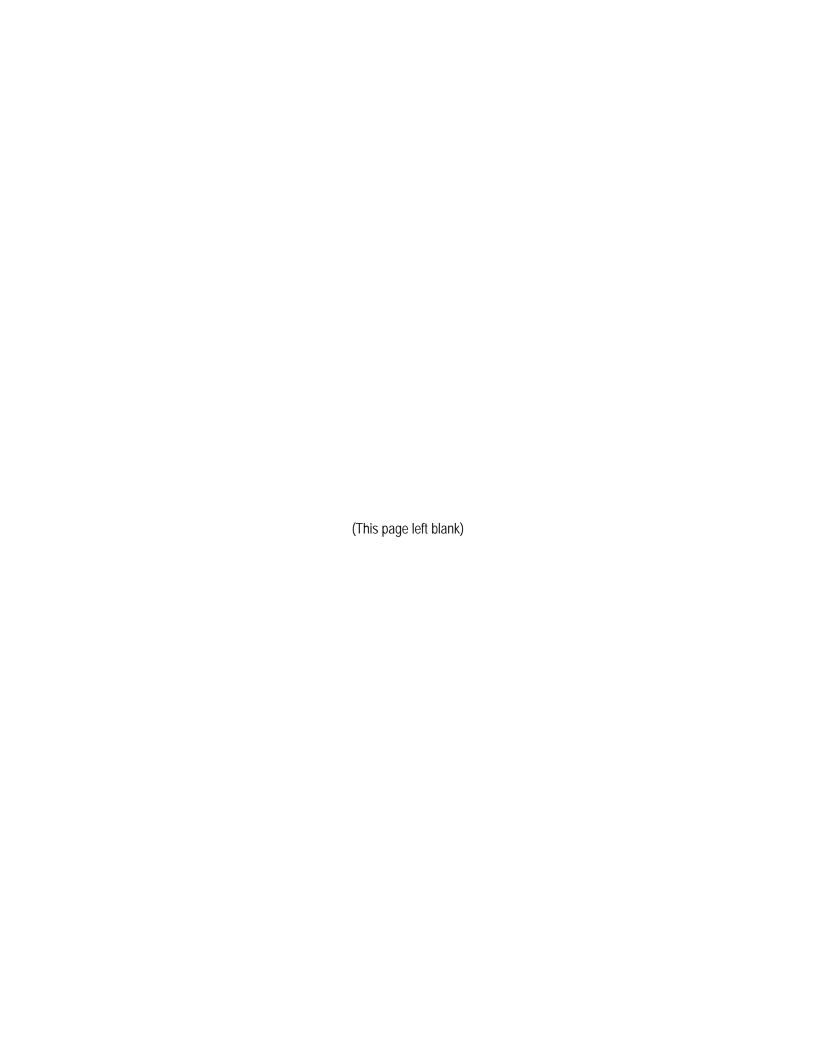
Section 135 Local Use of Funds (b) Requirements for the use of funds Funds made available shall be used to support vocational and technical education programs that-	1. =This issue is a strong component of this vocational and technical education program and will continue to be reinforced. 4. =This issue is NOT a strong component of this vocational and technical program.
1. Strengthen the academic, and vocational and technical skills of students participating in vocational and technical education programs by strengthening the academic, and vocational and technical components of such programs through the integration of academics with vocational and technical education programs through a coherent sequence of courses to ensure learning in the core academic and vocational technical subjects; Section 135(b)(1)	1 2 3 4 (Circle the District/College's status 1 through 4 for this issue)
2. Provide students with a strong experience in and understanding of all aspects of an industry: Section 135(b)(2)	1 2 3 4 (Circle the District/College's status 1 through 4 for this issue)

Table 2 - Current Program Status (continued)

District / Community College Program

Section 135 Local Use of Funds (b) Requirements for the use of funds Funds made available shall be used to support vocational and technical education	1. =This issue is a strong component of this vocational and technical education 4. =This issue is NOT a strong component of this vocational and technical program.			
programs that-	program and will continue to be reinforced.			
Develop, improve, or expand the use of technology in vocational and technical education, which <u>may</u> include: Section 135 (b)(3)	1 2 3 4			
3. training of vocational and technical education personnel to use state-of-the-art technology; which may include distance learning: Section 135 (b)(3)(A)	(Circle the District/College's status 1 through 4 for this issue)			
Develop, improve, or expand the use of technology in vocational and technical education, which may include: Section 135 (b)(3)	1 2 3 4			
4. providing vocational and technical education students with academic, and vocational and technical, skills that lead to entry into the high technology and telecommunications field; or Section 135 (b)(3)(B)	(Circle the District/College's status 1 through 4 for this issue)			
Develop, improve, or expand the use of technology in vocational and technical education, which may include: Section 135 (b)(3)	1 2 3 4			
5. encouraging schools to work with high technology industries to offer voluntary internships and mentoring programs; Section 135 (b)(3)(C)	(Circle the District/College's status 1 through 4 for this issue)			

Table 2 - Current Program Status (continued)


District / Community College Program

Section 135 Local Use of Funds (b) Requirements for the use of funds Funds made available shall be used to support vocational and technical education	1. =This issue is a strong component of this vocational and technical education 4. =This issue is <u>NOT</u> a strong component of this vocational and technical program.
programs that-	program and will continue to be reinforced.
Provide professional development programs to teachers, counselors, and administrators, including –Section 135 (b)(4)	1 2 3 4
6. in-service and pre-service training in state-of-the-art vocational and technical education programs and techniques, in effective practices to improve parental and community involvement; Section 135 (b)(4)(A)	(Circle the District/College's status 1 through 4 for this issue)
Provide professional development programs to teachers, counselors, and administrators, including –Section 135 (b)(4)	1 2 3 4
7. support of education programs for teachers of vocational and technical education in public schools and other public school personnel who are involved in the direct delivery of educational services to vocational and technical education students, to ensure that such teachers and personnel stay current with all aspects of an industry. Section 135 (b)(4)(B)	(Circle the District/College's status 1 through 4 for this issue)
Provide professional development programs to teachers, counselors, and administrators, including –Section 135(b)(4)	1 2 3 4
8. internship programs that provide business experience to teachers; and; Section 135 (b)(4)(C)	(Circle the District/College's status 1 through 4 for this issue)

Table 2 - Current Program Status (continued)

District / Community College Program

Section 135 Local Use of Funds (b) Requirements for the use of funds	1. =This issue is a strong component of this vocational 4. =This issue is NOT a strong component of this vocational and		
Funds made available shall be used to support vocational and technical education	and technical education technical program.		
programs that-	program and will continue to be		
	reinforced.		
Provide professional development programs to teachers, counselors,			
and administrators, including –	1 2 3 4		
9. programs designed to train teachers specifically in the use and	(Circle the District/College's status 1 through 4 for this issue)		
application of technology; Section 135 (b)(4)(D)			
10. Develop and implement evaluations of the vocational and technical			
education programs carried out with funds under this title, including an	<u>1 2 3 4</u>		
assessment of how the needs of special populations are being met;	(Circle the District/College's status 1 through 4 for this issue)		
Section 135 (b)(5)			
11. Initiate, improve, expand, and modernize quality vocational and			
technical education programs; Section 135 (b)(6)	1 2 3 4		
technical education programs, section 133 (b)(0)			
	(Circle the District/College's status 1 through 4 for this issue)		
12. Provide services and activities that are of sufficient size scope, and			
quality to be effective; and Section 135 (b)(7)	1 2 3 4		
1			
	(Circle the District/College's status 1 through 4 for this issue)		
13. Link secondary vocational and technical education programs and			
postsecondary vocational and technical education, including	<u>1 2 3 4</u>		
implementing Tech Prep programs; Section 135 (b)(8)			
	(Circle the District/College's status 1 through 4 for this issue)		

Appendix B

THE IOWA PROFESSIONAL DEVELOPMENT MODEL

EXECUTIVE SUMMARY

What is the Iowa Professional Development Model?

The lowa Professional Development Model focuses on improving student learning and engages all educators in collective professional development. The model provides guidance for local districts to use when designing, implementing, and evaluating the district career development plan as well as the individual teacher career development plans.

What is the purpose of this type of professional development?

The intent of the Iowa Professional Development Model is to provide a structure for professional development that is focused, collaborative, and that directly supports the Comprehensive School Improvement Process (CSIP) goals for student achievement.

What influenced the formation of the model?

The model was established in response to state and federal legislation, current trends in education, and research.

- Overwhelming evidence that well designed staff development, fully integrated with effective school improvement practices, can increase student learning.
- Iowa Student Achievement and Teacher Quality Program (SF 476, 2001)
- Federal legislation No Child Left Behind Act (2002)
- State and National Standards for Staff Development (National Staff Development Council and the Iowa Teacher Quality Program)

Who developed the model?

The model is a collaborative effort of the Iowa Department of Education and the Iowa Teacher Quality Professional Development Stakeholder Group. This group includes representatives of the major organizations and role groups involved in professional development and school improvement in Iowa.

What are the requirements for school districts?

Each district is required to submit a district career development plan as part of The Comprehensive School Improvement Plan. The first district plans were submitted in September of 2004 (IAC 281—83.6(2). In September of 2005 individual teacher career development plans will be required. The individual teacher career development plan will be developed, in cooperation with the teacher's supervisor, for each career teacher in the district.

How does a district accomplish gains in student achievement through staff development?

The process that results in student learning is described in the full text of the Iowa Professional Development Model (see DE Web Page). This process involves teachers and administrators in the collective study of student data, goal setting, determining content, designing training/learning opportunities, and using data to measure targeted outcomes, guiding training decisions, and evaluating the program. The Iowa Professional Development Standards establish expectations for the implementation of this process.

What are the Iowa Professional Development Standards?

The Iowa Teacher Quality legislation established standards for professional development. These standards are to be used in designing, delivering, and evaluating the district career development plans.

The Iowa Professional Development Standards

Implementation of a school district's career development plan shall meet the following standards:

- 1. Align with the Iowa teaching standards and criteria;
- 2. Deliver research-based instructional strategies aligned with the student achievement goals established by the district;
- 3. Deliver professional development training and learning opportunities that are targeted at instructional improvement and designed with the following components:
 - Student achievement data and analysis;
 - Theory;
 - Classroom demonstration and practice;
 - Observation and reflection;
 - Teacher collaboration and study of implementation; an
 - *Integration of instructional technology, if applicable;*
- 4. Include an evaluation component that documents the improvement in instructional practice and the effect on student learning; and
- 5. Support the professional development needs of district certified staff responsible for instruction.

What might a district do this year to get started?

Districts are encouraged to evaluate their current professional development practices to determine where their system of professional development may need strengthening. For a self-assessment tool to be used by local districts, see *School Improvement/Staff Development: Evaluating Current Plans* in Appendix B of the Model.

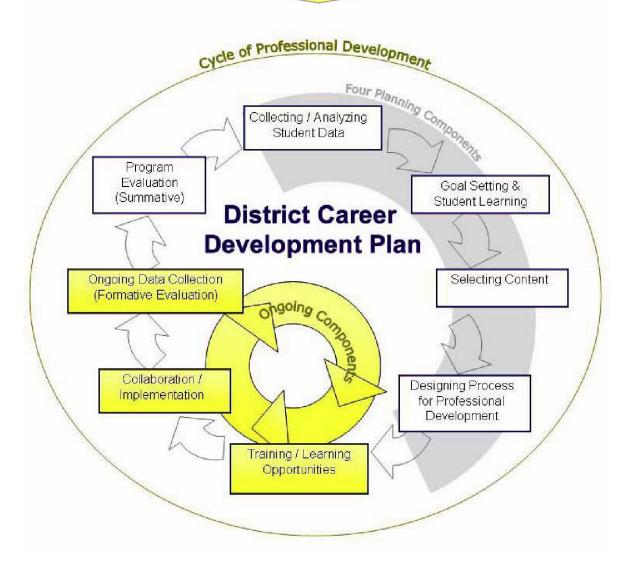
How can I learn more about the Iowa Professional Development Model?

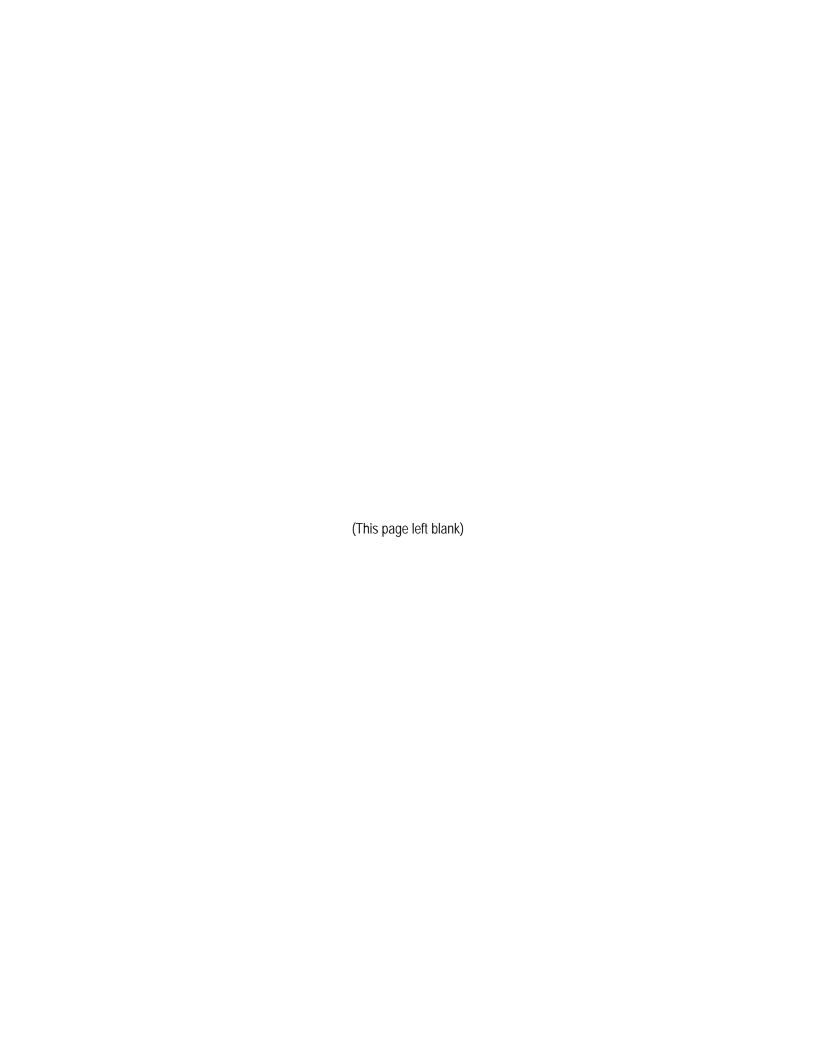
For additional sources of information:

- The Department of Education web site http://www.iowa.gov/educate/content/view/232/517/
- Department of Education Contact Deb Hansen deb.hansen@iowa.gov
- Area Education Agency Professional Development Consultants

Iowa Professional Development Model:

- 1. The focus is on instruction and curriculum. Theory is present underlying the instructional strategy or model selected for staff development. The strategy or model:
 - directly addresses student achievement in an academic area (deep content knowledge in reading, math, science, etc.)
 - has a research base (evidence of improved student achievement across settings, across time, and for all students). (Bransford, Brown and Cocking, 1999; Calhoun, 1994; Kennedy, 1990, 1999; Joyce and Showers, 2002; Schmoker, 1996; Slavin and Fashola, 1998)
- 2. The **study of implementation** is built in as a routine. The faculty studies student data related to the content of professional development. The faculty regularly studies implementation data to know what students are experiencing. (Joyce and Calhoun, 1996; Joyce and Showers, 2002; Slavin, 1996)
- 3. **All site and district personnel** responsible for instruction participate in the professional development. All teachers are included and the principal is heavily engaged in all aspects of the initiative. District administrative personnel and the approved provider are involved in training and in providing follow-up. (Operationally, this looks different at the elementary and secondary levels.) Research is clear that when increased student achievement is the goal, it is the collective efforts of educators that accomplish these goals. (Elmore, 2000; Joyce and Calhoun, 1996; Joyce and Showers, 2002; Newmann and Wehlage, 1995; Rosenholtz, 1989; Slavin, 1996; Wallace et al, 1984, 1990)
- 4. Goals focusing on student learning provide the direction for staff development efforts. There is a clearly identified need based on student data and the district's long-range and annual improvement goals as described in the CSIP. The strategy or model selected for staff development can be interpreted/applied in classroom settings. The desired teacher behaviors and the desired student behaviors are described. (Bernhardt, 1998; Rosenholtz, 1989; Schmoker, 1996)
- 5. **Intensive professional development** is provided. In addition to presentations of information and theory about the instructional strategy, participants are provided with multiple demonstrations modeling the use of the strategy and opportunities to practice using the instructional strategy demonstrated. Professional development is sustained over time. The initiative is designed to last until implementation data indicate that the teachers are implementing the strategy accurately and frequently and student performance goals are met. (Joyce and Showers, 1983, 2002; NSDC, 2001; Odden, et al., 2002; Wallace, LeMahieu, and Bickel, 1990)
- 6. Collaboration is built in with opportunities for teachers to work together on a regular basis. The professional development initiative is part of the day-to-day work of teaching. The focal point of professional development planning and implementation is at the building level. Adequate time is provided for workshop experiences and workplace supports, i.e., planning together, rehearsing and observing lessons (coaching), practicing strategies in the classroom, and collecting, analyzing and discussing data. (Fullan and Hargreaves, 1991; Lieberman and Miller, 1996; Little, 1997; Rosenholtz, 1989; Showers, 1982, 1984, 1985; Showers and Joyce, 1996; Showers, Joyce and Bennett, 1987)
- 7. The initiative has built in **ongoing follow-up**, **support**, **and technical assistance**. An LEA or AEA consultant or other approved provides ongoing technical assistance. This technical assistance occurs regularly in classrooms and in the workshop setting. (Joyce and Showers, 2002; Rosenholtz, 1989; Showers, 1982, 1984)
- 8. **Formative evaluation** ensures the regular and systematic collection of data relevant to stated goals (student progress, implementation of innovations, etc.) and **summative evaluation** provides information about the cumulative impact of a planned change on student learning. Data collected during the formative evaluation process may also be used in the summative evaluation. When student need is driving the planning and design of staff development, data on student response to the content of staff development is essential throughout the process. (Calhoun, 2001; Hertling, 2000; Yap et al., 2000)


Education web site


Iowa Professional Development Model

Student learning – at the center of school improvement and staff development

Operating Principles

- Focus on Curriculum, Instruction, and Assessment
- Participative Decision Making (School & District)
 - Leadership
 - Simultaneity

Appendix C

(Application in Process)

Appendix D

(Tech Prep Application in Process)

Appendix E

(Tech Prep Technical Review in Process)

Appendix F

IOWA DEPARTMENT OF EDUCATION BUREAU OF COMMUNITY COLLEGES & CAREER AND TECHNICAL EDUCATION FY '08 PERKINS IV TECH PREP ALLOCATION

	EDUCATIONAL REGION	INITIAL ALLOCATION	FY 2008 ALLOCATION BASED ON # OF SCHOOL DIST.	ALLOCATION FROM CARRYOVER	FY 2008 ALLOCATION
	24Region I	50,000	28,548	1,142	\$79,690
	23Region II	50,000	27,358	1,094	\$78,452
	18Region III	50,000	21,411	856	\$72,267
	13Region IV	50,000	15,463	619	\$66,082
	31 Region V	50,000	36,874	1,475	\$88,349
	14Region VI	50,000	16,653	666	\$67,319
	22Region VII	50,000	26,169	1,047	\$77,216
	22Region IX	50,000	26,169	1,047	\$77,216
	33Region X	50,000	39,253	1,570	\$90,823
	54Region XI	50,000	64,232	2,570	\$116,802
	23Region XII	50,000	27,358	1,094	\$78,452
	31 Region XIII	50,000	36,874	1,475	\$88,349
	20Region XIV	50,000	23,790	952	\$74,742
	23Region XV	50,000	27,358	1,094	\$78,452
	13Region XVI	50,000	15,463	619	\$66,082
TOTALS	364	750,000	432,973	17,320	\$1,200,293

Information provided is based on FY 2008 school district information.

1,182,973

TITLE III -- FY 2008.

FEDERAL DOLLARS AWARDED LESS: 5% STATE LEADERSHIP/ADMIN TOTAL FY 2008 GRANT MONEY	\$ \$	1,245,235.00 62,262.00 \$1,182,973.00
PART E TECH PREP LESS: \$50,000 PER AREA TOTAL		\$1,182,973.00 \$750,000.00 \$432,973.00
FY '07 CARRYOVER	\$	17,320.22
TOTAL TO AWARD		\$1,200,293.22

Appendix G

Reserve Allocation Sec 112(c)

Rank	College	Total	Total	CTE	Allocation
Italik	College	Enrollment	Students	%	Allocation
1	SCC-16	4,541	2,430	53.51%	\$10,000
2	WITCC-12	7,802	4,078	52.27%	\$10,000
3	IHCC-15	6,068	2,987	49.23%	\$10,000
4	KCC-10	20,418	9,658	47.30%	\$10,000
5	HCC-07	7,837	3,392	43.28%	\$10,000
6	NICC-01	7,033	2,740	38.96%	\$10,000
7	EICCD-09	11,355	4,230	37.25%	\$10,000
8	ILCC-03	4,558	1,697	37.23%	\$10,000
9	NCC-04	1,766	625	35.39%	\$10,000
10	SWCC-14	1,810	608	33.59%	\$10,000
11	NIACC-02	4,366	1,439	32.96%	\$10,000
12	DMACC-11	26,801	8,001	29.85%	\$10,000
13	IWCC-13	6,610	1,864	28.20%	\$10,000
14	ICCC-05	6,919	1,948	28.15%	\$10,000
15	IVCCD-06	3,869	826	21.35%	\$10,000
	Total	121,753	46,523	38.21%	\$150,000

Appendix H

Iowa Department of Education Bureau of Community Colleges & Career and Technical Education FY '08 Perkins Basic Grant Allocation for Secondary School Districts

Using Census Data - SD03 Children ages 5-17

FY2008 Funds FY '07 Carryover Total avaliable

Secondary Post Sec. 5,705,704 60,178 5,765,882

4,483,053 7,774 4,490,827

10,188,757 67,953 10,256,710

Total

					70%	6	4,430,021	10,200,710	30%	%				
				\leftarrow	# of Poor		Carryover		Children		Carryover	Funds	Carryover	Total
МА	Со	Dist	Dist Name	# of Poor	% of Total	Allocation	Allocation	# of Children	% of Total	Allocation	Allocation	Allocation	Allocation	Allocation
11	39		ADAIR-CASEY CSD	18	0.0361388%	1,442	15	338	0.0675292%	1.156	12	2,598	27	2.625
11	25		ADEL-DE SOTO-MINBURN CSD	11	0.0220848%	881	9	1,724	0.3444390%	5,896	62	6,777	71	6,848
06	42		AGWSR CSD	99	0.1987633%	7,938	84	881	0.1760155%	3,013	32	10,951	116	11,067
13	78		A-H-S-T CSD	53	0.1064086%	4,249	45	679	0.1356578%	2,322	24	6,571	69	6,640
12	75		AKRON WESTFIELD CSD	27	0.0542082%	2,164	23	569	0.1136809%	1,946	21	4,110	44	4,154
05	11		ALBERT CITY-TRUESDALE CSD	46	0.0923546%	3,688	39	288	0.0575397%	985	10	4,673	49	4,722
15	68		ALBIA CSD	143	0.2871025%	11,467	120	1,242	0.2481399%	4,247	45	15,714	165	15,879
10	57		ALBURNETT CSD	19	0.0381465%	1,524	15	659	0.1316620%	2,254	24	3,778	39	3,817
06	42		ALDEN CSD	36	0.0722775%	2,887	29	316	0.0631338%	1.081	11	3,968	40	4,008
03	55	0126	ALGONA CSD	134	0.2690331%	10,745	112	1.554	0.3104746%	5,314	56	16,059	168	16,227
01	03	0135	ALLAMAKEE CSD	174	0.3493415%	13,953	146	1,578	0.3152696%	5,397	57	19,350	203	19,553
07	12		ALLISON-BRISTOW CSD	32	0.0642467%	2,566	26	323	0.0645324%	1,105	12	3,671	38	3,709
05	11		ALTA CSD	51	0.1023932%	4,090	42	641	0.1280658%	2,192	23	6,282	65	6,347
11	85		AMES CSD	397	0.7970607%	31,835	335	4.387	0.8764814%	15,003	158	46,838	493	47,331
10	53		ANAMOSA CSD	111	0.2228558%	8,901	93	1,321	0.2639234%	4,518	48	13,419	141	13,560
09	49	0243	ANDREW CSD	30	0.0602313%	2,406	24	342	0.0683284%	1,170	12	3,576	36	3,612
13	15	0252	ANITA CSD	32	0.0642467%	2,566	26	310	0.0619351%	1,060	11	3,626	37	3,663
11	77	0261	ANKENY CSD	211	0.4236267%	16,920	177	6,007	1.2001423%	20,543	217	37,463	394	37,857
12	97	0270	ANTHON-OTO CSD	38	0.0762930%	3,047	31	312	0.0623347%	1,067	11	4,114	42	4,156
07	12	0279	APLINGTON-PARKERSBURG CSD	71	0.1425474%	5,693	59	773	0.1544381%	2,644	28	8,337	87	8,424
03	32	0333	ARMSTRONG-RINGSTED CSD	42	0.0843238%	3,368	35	352	0.0703263%	1,204	13	4,572	48	4,620
12	24	0355	AR-WE-VA CSD	32	0.0642467%	2,566	26	453	0.0905052%	1,549	16	4,115	42	4,157
13	15	0387	ATLANTIC CSD	184	0.3694186%	14,755	156	1,370	0.2737131%	4,684	49	19,439	205	19,644
11	05	0414	AUDUBON CSD	32	0.0642467%	2,566	27	692	0.1382551%	2,366	25	4,932	52	4,984
12	18	0423	AURELIA CSD	29	0.0582236%	2,325	25	314	0.0627343%	1,073	11	3,398	36	3,434
11	85	0472	BALLARD CSD	54	0.1084163%	4,330	46	1,077	0.2151745%	3,682	39	8,012	85	8,097
12	47	0504	BATTLE CREEK-IDA GROVE CSD	64	0.1284934%	5,132	54	713	0.1424507%	2,437	26	7,569	80	7,649
11	50	0513	BAXTER CSD	20	0.0401542%	1,604	17	297	0.0593378%	1,015	11	2,619	28	2,647
06	38	0540	BCLUW CSD	30	0.0602313%	2,406	25	626	0.1250689%	2,140	23	4,546	48	4,594
14	87	0549	BEDFORD CSD	62	0.1244780%	4,972	52	523	0.1044905%	1,788	19	6,760	71	6,831
10	06	0576	BELLE PLAINE CSD	37	0.0742853%	2,967	31	728	0.1454476%	2,490	25	5,457	56	5,513
09	49	0585	BELLEVUE CSD	64	0.1284934%	5,132	54	859	0.1716201%	2,938	30	8,070	84	8,154
02	99	0594	BELMOND-KLEMME CSD	35	0.0702698%	2,807	30	799	0.1596327%	2,732	28	5,539	58	5,597
09	16	0603	BENNETT CSD	8	0.0160617%	642	7	243	0.0485491%	831	8	1,473	15	1,488
10	06	0609	BENTON CSD	88	0.1766784%	7,057	74	1,752	0.3500332%	5,992	62	13,049	136	13,185
09	82	0621	BETTENDORF CSD	274	0.5501124%	21,971	232	4,083	0.8157451%	13,963	146	35,934	378	36,312
11	77		BONDURANT-FARRAR CSD	63	0.1264857%	5,052	53	903	0.1804109%	3,088	32	8,140	85	8,225
11	80		BOONE CSD	215	0.4316576%	17,240	182	2,321	0.4637140%	7,937	83	25,177	265	25,442
04	84		BOYDEN-HULL CSD	46	0.0923546%	3,689	39	834	0.1666254%	2,852	30	6,541	69	6,610
13	43		BOYER VALLEY CSD	88	0.1766784%	7,057	74	517	0.1032918%	1,768	19	8,825	93	8,918
06	79		BROOKLYN-GUERNSEY-MALCOM CSD	40	0.0803084%	3,208	34	598	0.1194748%	2,045	22	5,253	56	5,309
16	29		BURLINGTON CSD	865	1.7366688%	69,362	732	5,039	1.0067449%	17,233	182	86,595	914	87,509
13	15		C AND M CSD	28	0.0562159%	2,245	24	215	0.0429550%	735	8	2,980	32	3,012
02	35		CAL CSD	34	0.0682621%	2,726	29	323	0.0645324%	1,105	12	3,831	41	3,872
09	23		CALAMUS/WHEATLAND CSD	66	0.1325088%	5,292	56	485	0.0968985%	1,659	17	6,951	73	7,024
09	23		CAMANCHE CSD	20	0.0401542%	1,604	17	797	0.1592331%	2,726	29	4,330	46	4,376
15	90		CARDINAL CSD	61	0.1224703%	4,891	52	693	0.1384549%	2,370	25	7,261	77	7,338
11	91		CARLISLE CSD	33	0.0662544%	2,646	28	1,281	0.2559318%	4,381	46	7,027	74	7,101
11	14		CARROLL CSD	178	0.3573723%	14,273	151	2,575	0.5144608%	8,806	93	23,079	244	23,323
07	07		CEDAR FALLS CSD	323	0.6484902%	25,901	273	4,596	0.9182377%	15,718	166	41,619	439	42,058
10	57		CEDAR RAPIDS CSD	1,869	3.7524093%	149,871	1,581	20,222	4.0401659%	69,156	729	219,027	2310	221,337
10	57		CENTER POINT-URBANA CSD	49	0.0983778%	3,929	41	1,037	0.2071829%	3,546	37	7,475	78	7,553
15	04	1071	CENTERVILLE CSD	266	0.5340508%	21,330	225	1,578	0.3152696%	5,397	57	26,727	282	27,009

No. Co. Pat. Dist. Name Pat. Pat		< 70% → 30%													
10						# of Poor		Carryover		Children		Carryover	Funds	Carryover	Total
10 20 1002 CENTRAL CUNTON CSD	MA	Со	Dist		# of Poor	% of Total	Allocation	•	# of Children	% of Total	Allocation	-	Allocation	-	Allocation
1	_						,				,		,		
14 27 1093 CENTRALLE COLOR 120 Z44440695 9,783 103 722 C14420695 2,469 26 12,252 129 12,381 103 104 10															· ·
10															· ·
50 1005 CENTRAL LYON CSD															· ·
15 59 1107 CHARITOKICSD 195 0.3915034/h 15,037 105 11,417 0.28110339/h 4,846 51 20,448 225 24,747 122 42 1134 CHARLES COVER CHAR							,				,				· ·
12 24 1134 CHARTER DAK-UTE CSD							,		_						,
12 18 182 CHEROKEE CSD	02	34	1116	CHARLES CITY CSD	227	0.4557501%	18,203	192	1,838	0.3672152%	6,286	66	24,489	258	24,747
13 73 1107 CLARINGACSD							,								
15 15 15 15 15 15 15 15					_										· ·
14 20 1211 CLARME CSD					_				,						
17 1215 12					_		,				,				· ·
1 121 CLAY CENTRALEVERLY CISD 35 0.0702888% 2.807 30 470 0.093916% 1.807 17 4.414 47 4.481 57 52 52 52 52 52 52 52											,				· ·
10 52 1221 CLEAR CREEK-AMANA CSD 60 0.1204629% 4.811 51 1.215 0.4247467% 4.155 44 8.966 55 9.081 1.201											,		,		· ·
14 87 1224 CLEARFIELD CSD	10	52	1221	CLEAR CREEK-AMANA CSD	60	0.1204626%	4,811	51	1,215	0.2427456%	4,155	44	8,966	95	9,061
19 23 1278 CLINTON CSD						0.1927401%		81	1,383			50			
11 50 1332 COLFA-MINIOS CSD 138 0.2734859% 11,9066 115 879 0.17561607% 3.006 32 13,912 147 14,095 11 85 1350 COLLINS-MAXWELL CSD 57 0.1144394% 4,571 48 502 0.1002949% 1,133 107 27,774 293 28,097 11 85 1350 COLLINS-MAXWELL CSD 35 0.07020899% 2,807 30 555 0.112817% 1,932 20 4,739 50 4,789 66 6,354 11 14 1415 CON RAPIDS-BAYARD CSD 68 0.1766784% 5,152 54 48 70 0.0972899% 1,665 16 6,288 66 6,354 11 14 1415 CON RAPIDS-BAYARD CSD 66 0.12644934% 5,152 54 48 70 0.0972899% 1,665 18 6,707 76 6,660 12 14 1449 CORWITH-WESLEY CSD 22 0.04416869% 1,165 14 14 0.0872819 1,665 14 14 0.0872819 1,665 14 14 0.0872819 1,665 14 14 0.0872819 1,665 1,2								· ·							
10 57 1337 COLLEGE CSD									· · · · · · · · · · · · · · · · · · ·						· ·
11 85 130 COLINS-MAXWELL CSD 57 0.1144394% 4.571 48 502 0.1002949% 1.717 18 6.288 66 6.384 19 85 1308 COLLAMBUS CSD 88 0.1766784% 5.132 74 958 0.1913994% 3.276 35 10.333 109 10.442 11 14 14.13 2000 A.189 0.1766784% 5.132 54 48 0.0972990% 1.666 18 6.797 72 6.869 14 0.2 1.431 CORNING CSD 67 0.1345166% 5.373 57 513 0.1024986% 1.754 19 7.127 76 7.203 13 7.87 6.70 7.804 1.90 7.804000% 1.764 19 7.277 7.613 0.1024986% 1.754 19 7.127 76 7.203 13 7.87 6.76 6.79 7.812 8.3 7.806 1.824253134 1.161							,				,		,		,
11 85 139 COLDNESCO CSD 35 0.0702698% 2.807 30 566 0.1128817% 1.932 20 4.739 50 4.789 11 1.4 1.413 COOR ARPIDS-BAYARD CSD 64 0.1284934% 7.057 7.4 9.9 1.186 1.93 1.93 1.0333 1.09 1.042 1.0 1.1414 1.000 ARPIDS-BAYARD CSD 64 0.1248169% 5.73 57 7.5 3.01024926% 1.754 1.9 7.203 2.6 6.808 9.9 2.643 2.8 2.6711 1.449 CORWINITH-WESLEY CSD 1.26 2.7425313% 10.95.37 1.155 3.971 1.971232% 3.375 3.56 143,294 151 1.44,805 0.9521519 2.66 1.484 154 1.482 0.0562159% 2.64 1.4 1.482 0.2653010% 4.884 52 1.9478 2.06 1.9844 1.6 2.29 1.602 0.0562159% 2.245 2.4 1.4 1.428 0.265															
19 58 1388 COLUMBUS CSD 88 0.1766744% 7.057 74 958 0.1913994% 3.276 35 10.333 109 10.442 11 14 1413 COON RAPIDS-BAYARD CSD 67 0.1345165% 5.373 57 513 0.1024926% 1.754 19 7.127 76 7.203 12 141 144 CORWITH-WESLEY CSD 2 0.0441669% 1.764 19 2.57 0.0513462% 879 9 2.643 28 2.6711 13 78 1476 COUNCIL BLUFFS CSD 1.366 2.7425313% 109.537 1.155 9.871 1.9721332% 33.757 356 143.294 1511 144.805 14 88 1503 CRESTON CSD 126 0.3664091% 1.454 1.454 1.9721332% 33.757 356 143.294 1511 144.805 15 25 1576 DALLAS CENTER-GRIMES CSD 2 0.0466195% 1.544 1.426 0.2352591% 5.567 59 7.812 83 7.865 15 25 1576 DALLAS CENTER-GRIMES CSD 2 2.6056195% 2.245 2.4 1.628 0.3252591% 5.567 59 7.812 83 7.865 15 28 1619 DAVIS COUNTY CSD 2.283 5.6677642% 2.26,370 2.388 11,400 3.6761474% 62.925 664 289,255 3052 222.347 15 28 1619 DAVIS COUNTY CSD 2.283 5.6677642% 2.245 2.4 1.401 0.36761474% 62.925 664 289,255 3052 222.347 16 29 1610 DAVIS COUNTY CSD 2.283 0.1667169% 4.244 4.195 0.1667169% 5.666 0.24148 2.655 2.4403 16 29 1610 DAVIS COUNTY CSD 2.285 0.4761619% 4.244 2.445 2.4					_										
14 02 1431 CORNING CSD 67 0.1346165% 5,373 57 513 0.1024926% 1,754 19 7,127 76 7,203 13 78 1476 COUNCIL BLUFFS CSD 1,366 2,7425313% 109,537 1,155 9,871 1,9721332% 33,757 356 143,294 1511 144,805 14 88 1503 CRESTON CSD 18 0.0562159% 2,245 24 1,628 0.3252591% 6,567 59 7,812 83 7,895 16 29 1602 20 20 1,01156% 2,2245 24 1,628 0.3252591% 6,567 59 7,812 83 7,895 10 28 1,661 DALLAS CENTRICRESION 2,823 5,6677642% 226,370 2,388 18,400 3,6761474% 62,925 664 289,295 3052 22,347 10 48 16,47 1,264 1,44 1,44 1,44 1,44 1,44 <td>09</td> <td></td> <td></td> <td></td> <td>88</td> <td></td>	09				88										
12	11	14	1413	COON RAPIDS-BAYARD CSD	64	0.1284934%	5,132	54	487	0.0972980%	1,665	18	6,797	72	
13 78 1476 COUNCIL BLUFFS CSD 1,366 27425313% 109,537 1,155 9,871 1,9721332% 33,757 356 143,294 151 144,804 151 24 1,628 0,355501% 6,655 59 7,812 83 7,895 186 1,628 0,355501% 5,567 59 7,812 83 7,895 1,628 0,3552591% 5,567 59 7,812 83 7,895 1,628 0,3552591% 5,567 59 7,812 83 7,895 1,628 1,921332% 3,3757 36 64 29,2273 2,823 30501156% 2,245 24 1,168 0,3552591% 5,567 59 7,812 83 7,895 1,942					-						,				
14 88 1500 CRESTON CSD 182 0.3664031% 14.594 154 1.428 0.22853010% 4,884 52 19.478 206 19.684 16 29 1602 DANVILLE CSD 15 0.0301156% 1.203 13 433 0.0865093% 1.481 16 2.684 29 2.713 15 28 1610 PORTOR CSD 2.85 6677642% 2.26,370 2.388 18.400 3.6767447% 62.925 664 289.295 3052 229.317 15 28 1619 DAVIS COUNTY CSD 235 0.4718118% 18.844 199 1.551 0.3098753% 5,007 53 9.417 100 48 1647 DEEP RIVER MILLERSBURG CSD 28 0.0562159% 2.245 24 211 0.042158% 722 8 2.967 32 2.999 12 24 1701 DEINISON GSD 30 30882621% 2.245 24 211 0.0421588% 722 8 2.967 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>															-
11					,										· ·
16 29 1602 DANVILLE CSD															
09 82 1611 DAVENPORT CSD 2,823 5,6677642% 226,370 2,388 18,400 3,6761474% 62,925 664 289,295 3052 222,347					_				,						· ·
15					_						,				
10					,						,				· ·
19 23 1675 DELWOOD CSD 34 0.0682621% 2.726 29 280 0.0559414% 958 10 3.684 39 3.723 3.771 DENISON CSD 183 0.3674109% 14,674 155 1,654 0.3304537% 5,656 60 20,330 215 20,545 60 70 719 DENVER CSD 33 0.0662544% 2,646 28 640 0.1278660% 2,189 23 4,835 51 4,886 11 77 1737 DES MOINES INDEPENDENT CSD 5,215 10,4702056% 418,179 4,411 34,902 6,9730922% 119,359 1,259 537,538 5670 543,206 38 1791 DIKE-NEW HARTFORD CSD 35 0.0702698% 2,807 30 713 0.1424507% 2,438 26 5,245 56 5,301 1,554 16 92 0.0183807% 315 3 1,839 19 1,858 10 1,554 16 1,554 1,554 16 1,554 16 1,554 16 1,554 16 1,554 16 1,554 16 1,554 16 1,554 16 1,554 16 1,554 16 1,554 16 1,554 16 1,554 16 1,554 1,554 16 1,554 1	01	96	1638	DECORAH CSD	55	0.1104240%	4,410	47	1,464	0.2924935%	5,007	53	9,417	100	9,517
12					_										
171 09 1719 DENVER CSD 33 0.0662544% 2.646 28 640 0.1278660% 2.189 23 4.835 51 4.886 11 77 1737 DES MOINES INDEPENDENT CSD 5.215 10.4702056% 418,179 4.411 34,902 6.9730922% 119,359 1,259 537,538 5670 543,208 1781 DIKE-NEW HARTFORD CSD 35 0.0702698% 2.807 30 713 0.1424507% 2.438 26 5.245 56 5.301 1863 DIBUQUE CSD 1,087 2.1822803% 87,164 919 12,369 2.4712102% 42,300 446 129,464 1365 130,829					_										
11 77 1737 DES MOINES INDEPENDENT CSD 5,215 10.4702056% 418,179 4,411 34,902 6.9730922% 119,359 1,259 537,638 5670 543,208 14 80 1782 DIAGONAL CSD 19 0.0381465% 1,524 16 92 0.0183807% 315 3 1,839 19 1,858 07 38 1791 DIKE-NEW HARTFORD CSD 35 0.0702698% 2,807 30 713 0.1424507% 2,438 26 5,245 56 5,301 05 99 1854 DOWS CSD 12 0.0240925% 962 10 167 0.0333650% 571 6 1,533 16 1,549 07 07 1908 DUNKERTON CSD 10,0023932% 4,090 43 521 0.104099% 1,782 19 5,872 62 5,934 09 16 1926 DURANT CSD 32 0.0642467% 2,566 27 563 0.11248									,						
14 80 1782 DIAGONAL CSD 19 0.0381465% 1,524 16 92 0.0183807% 315 3 1,839 19 1,858 07 38 1791 DIKE-NEW HARTFORD CSD 35 0.0702698% 2,807 30 713 0.1424507% 2,438 26 5,245 56 5,301 05 99 1854 DOWS CSD 12 0.0240925% 962 10 167 0.0333650% 571 6 1,533 16 1,549 01 31 1863 DUBUQUE CSD 1,087 2.1823803% 87,164 919 12,369 2.4712102% 42,300 446 129,464 1365 130,829 07 07 1908 DUNKHRTON CSD 51 0.1023932% 4,090 43 521 0.104090% 1,782 19 5,872 62 5,948 09 16 1926 DURANT CSD 31 6,409 68 6,558 11 <															· ·
07 38 1791 DIKE-NEW HARTFORD CSD 35 0.0702698% 2,807 30 713 0.1424507% 2,438 26 5,245 56 5,301 05 99 1854 DOWS CSD 12 0.0240925% 962 10 167 0.0333650% 571 6 1,533 16 1,549 07 07 1908 DUNKERTON CSD 1,087 2,1823803% 87,164 919 12,369 2,472102% 42,300 446 129,464 1365 130,829 07 1908 DUNKERTON CSD 51 0.1023932% 4,090 43 521 0.1040909% 1,782 19 5,872 62 5,934 09 16 1926 DURANT CSD 32 0.0642467% 2,566 27 563 0.1124821% 1,925 20 4,491 47 4,538 11 61 1953 EAST BUCHANAN CSD 46 0.0923546% 3,689 39 537 0.1072876%					,			,	,		,				
05 99 1854 DOWS CSD 12 0.0240925% 962 10 167 0.0333650% 571 6 1,533 16 1,549 01 31 1863 DUBUQUE CSD 1,087 2.1823803% 87,164 919 12,369 2.4712102% 42,300 446 129,464 1365 130,829 07 70 1908 DURNERTON CSD 51 0.1023932% 4,090 43 521 0.1040909% 1,782 19 5.872 62 5.934 09 16 1926 DURANT CSD 32 0.0642467% 2,566 27 563 0.1124821% 1,925 20 4,491 47 4,538 05 99 1944 EAGLE GROVE CSD 44 0.0883392% 3,528 37 866 0.1730187% 2,962 31 6,490 68 6,558 11 61 1953 EAST BUHANAN CSD 61 0.1224703% 4,891 52 559 0.11168															· ·
07 1908 DUNKERTON CSD 51 0.1023932% 4,090 43 521 0.1040909% 1,782 19 5,872 62 5,934 09 16 1926 DURANT CSD 32 0.06422467% 2,566 27 563 0.1124821% 1,925 20 4,491 47 4,538 05 99 1944 EAGLE GROVE CSD 44 0.083392% 3,528 37 866 0.1730187% 2,962 31 6,490 68 6,558 11 61 1953 EARLHAM CSD 46 0.092346% 3,689 39 537 0.1072876% 1,836 19 5,525 58 5,583 07 10 1963 EAST BUCHANAN CSD 61 0.1224703% 4,891 52 559 0.1116830% 1,912 20 6,803 72 6,875 09 49 1965 EAST CENTRAL CSD 70 0.1405397% 5,613 59 414 0.08271339 1,			1854	DOWS CSD	12	0.0240925%			167						-
09 16 1926 DURANT CSD 32 0.0642467% 2,566 27 563 0.1124821% 1,925 20 4,491 47 4,538 05 99 1944 EAGLE GROVE CSD 44 0.0883392% 3,528 37 866 0.1730187% 2,962 31 6,490 68 6,558 11 61 1953 EARLHAM CSD 46 0.0923546% 3,689 39 537 0.1072876% 1,836 19 5,525 58 5,583 07 10 1963 EAST BUCHANAN CSD 61 0.1224703% 4,891 52 559 0.1116830% 1,912 20 6,875 09 49 1965 EAST GERENE CSD 70 0.1405397% 5,613 59 414 0.0827133% 1,416 15 7,029 74 7,103 05 37 1967 EAST GREENE CSD 54 0.1084163% 4,330 46 403 0.0805156% 1,378	-		1863	DUBUQUE CSD	1,087	2.1823803%	87,164	919	12,369	2.4712102%	42,300	446	129,464	1365	
05 99 1944 EAGLE GROVE CSD 44 0.0883392% 3,528 37 866 0.1730187% 2,962 31 6,490 68 6,558 11 61 1953 EARLHAM CSD 46 0.0923546% 3,689 39 537 0.1072876% 1,836 19 5,525 58 5,583 07 10 1963 EAST BUCHANAN CSD 61 0.1224703% 4,891 52 559 0.1116830% 1,912 20 6,803 72 6,875 09 49 1965 EAST GEENE CSD 70 0.1406397% 5,613 59 414 0.0827133% 1,416 15 7,029 74 6,875 05 37 1967 EAST GREENE CSD 54 0.1084163% 4,330 46 403 0.0805156% 1,378 15 5,708 61 5,769 06 64 1968 EAST MARSHALL CSD 82 0.1646322% 6,575 69 779 0.	-						,				,				· ·
111 61 1953 EARLHAM CSD 46 0.0923546% 3,689 39 537 0.1072876% 1,836 19 5,525 58 5,583 07 10 1963 EAST BUCHANAN CSD 61 0.1224703% 4,891 52 559 0.1116830% 1,912 20 6,803 72 6,875 09 49 1965 EAST CENTRAL CSD 70 0.1405397% 5,613 59 414 0.0827133% 1,416 15 7,029 74 7,103 05 37 1967 EAST GREENE CSD 54 0.1084163% 4,330 46 403 0.0805156% 1,378 15 5,708 61 5,769 14 88 1970 EAST MARSHALL CSD 82 0.1646322% 6,575 69 779 0.1556369% 2,664 28 9,239 97 9,336 14 88 1970 EAST UNION CSD 77 0.1545936% 6,174 65 487 0.0972980% 1,665 18 7,839 83 7,922 01 <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td></t<>					_						,				
07 10 1963 EAST BUCHANAN CSD 61 0.1224703% 4,891 52 559 0.1116830% 1,912 20 6,803 72 6,875 09 49 1965 EAST CENTRAL CSD 70 0.1405397% 5,613 59 414 0.0827133% 1,416 15 7,029 74 7,103 05 37 1967 EAST GREENE CSD 54 0.1084163% 4,330 46 403 0.0805156% 1,378 15 5,708 61 5,769 06 64 1968 EAST MARSHALL CSD 82 0.1646322% 6,575 69 779 0.155669% 2,664 28 9,239 97 9,336 14 88 1970 EAST EN ALLAMAKEE CSD 35 0.0702698% 2,807 30 476 0.0951003% 1,628 17 4,435 47 4,482 15 90 0657 EDDYVILLE-BLAKESBURG CSD 52 0.1044009% 4,170 44 771															
09 49 1965 EAST CENTRAL CSD 70 0.1405397% 5,613 59 414 0.0827133% 1,416 15 7,029 74 7,103 05 37 1967 EAST GREENE CSD 54 0.1084163% 4,330 46 403 0.0805156% 1,378 15 5,708 61 5,769 06 64 1968 EAST MARSHALL CSD 82 0.1646322% 6,575 69 779 0.1556369% 2,664 28 9,239 97 9,336 14 88 1970 EAST UNION CSD 77 0.1545936% 6,174 65 487 0.0972980% 1,665 18 7,839 83 7,922 01 03 1972 EASTERN ALLAMAKEE CSD 35 0.0702698% 2,807 30 476 0.0951003% 1,628 17 4,435 47 4,482 15 90 0657 EDDYVILLE-BLAKESBURG CSD 52 0.1044009% 4,170 44 771 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td>,</td> <td></td> <td>-</td>							,				,		,		-
05 37 1967 EAST GREENE CSD 54 0.1084163% 4,330 46 403 0.0805156% 1,378 15 5,708 61 5,769 06 64 1968 EAST MARSHALL CSD 82 0.1646322% 6,575 69 779 0.1556369% 2,664 28 9,239 97 9,336 14 88 1970 EAST UNION CSD 77 0.1545936% 6,174 65 487 0.0972980% 1,665 18 7,839 83 7,922 01 03 1972 EASTERN ALLAMAKEE CSD 35 0.0702698% 2,807 30 476 0.0951003% 1,628 17 4,435 47 4,482 15 90 0657 EDDYVILLE-BLAKESBURG CSD 52 0.1044009% 4,170 44 771 0.1540386% 2,637 28 6,807 72 6,879 01 28 1989 EDGEWOOD-COLESBURG CSD 37 0.0742853% 2,967 31 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
06 64 1968 EAST MARSHALL CSD 82 0.1646322% 6,575 69 779 0.1556369% 2,664 28 9,239 97 9,336 14 88 1970 EAST UNION CSD 77 0.1545936% 6,174 65 487 0.0972980% 1,665 18 7,839 83 7,922 01 03 1972 EASTERN ALLAMAKEE CSD 35 0.0702698% 2,807 30 476 0.0951003% 1,628 17 4,435 47 4,482 15 90 0657 EDDYVILLE-BLAKESBURG CSD 52 0.1044009% 4,170 44 771 0.1540386% 2,637 28 6,807 72 6,879 01 28 1989 EDGEWOOD-COLESBURG CSD 37 0.0742853% 2,967 31 597 0.1192750% 2,042 22 5,009 53 5,068 06 42 2007 ELDORA-NEW PROVIDENCE CSD 69 0.1385320% 5,533 58					_										
14 88 1970 EAST UNION CSD 77 0.1545936% 6,174 65 487 0.0972980% 1,665 18 7,839 83 7,922 01 03 1972 EASTERN ALLAMAKEE CSD 35 0.0702698% 2,807 30 476 0.0951003% 1,628 17 4,435 47 4,482 15 90 0657 EDDYVILLE-BLAKESBURG CSD 52 0.1044009% 4,170 44 771 0.1540386% 2,637 28 6,807 72 6,879 01 28 1989 EDGEWOOD-COLESBURG CSD 37 0.0742853% 2,967 31 597 0.1192750% 2,042 22 5,009 53 5,062 06 42 2007 ELDORA-NEW PROVIDENCE CSD 69 0.1385320% 5,533 58 838 0.1674245% 2,866 30 8,399 88 8,487 13 83 2016 ELK HORN-KIMBALLTON CSD 29 0.0582236% 2,325 25<					_										
15 90 0657 EDDYVILLE-BLAKESBURG CSD 52 0.1044009% 4,170 44 771 0.1540386% 2,637 28 6,807 72 6,879 01 28 1989 EDGEWOOD-COLESBURG CSD 37 0.0742853% 2,967 31 597 0.1192750% 2,042 22 5,009 53 5,062 06 42 2007 ELDORA-NEW PROVIDENCE CSD 69 0.1385320% 5,533 58 838 0.1674245% 2,866 30 8,399 88 8,487 13 83 2016 ELK HORN-KIMBALLTON CSD 29 0.0582236% 2,325 25 298 0.0595376% 1,019 11 3,344 36 3,380 03 74 2088 EMMETSBURG CSD 92 0.1847093% 7,377 78 750 0.1498430% 2,565 27 9,942 105 10,047 10 48 2097 ENGLISH VALLEYS CSD 47 0.0943624% 3,769 40<	14	88	1970	EAST UNION CSD	77	0.1545936%	6,174	65	487	0.0972980%	1,665	18	7,839	83	
01 28 1989 EDGEWOOD-COLESBURG CSD 37 0.0742853% 2,967 31 597 0.1192750% 2,042 22 5,009 53 5,062 06 42 2007 ELDORA-NEW PROVIDENCE CSD 69 0.1385320% 5,533 58 838 0.1674245% 2,866 30 8,399 88 8,487 13 83 2016 ELK HORN-KIMBALLTON CSD 29 0.0582236% 2,325 25 298 0.0595376% 1,019 11 3,344 36 3,380 03 74 2088 EMMETSBURG CSD 92 0.1847093% 7,377 78 750 0.1498430% 2,565 27 9,942 105 10,047 10 48 2097 ENGLISH VALLEYS CSD 47 0.0943624% 3,769 40 429 0.0857102% 1,467 15 5,236 55 5,291															
06 42 2007 ELDORA-NEW PROVIDENCE CSD 69 0.1385320% 5,533 58 838 0.1674245% 2,866 30 8,399 88 8,487 13 83 2016 ELK HORN-KIMBALLTON CSD 29 0.0582236% 2,325 25 298 0.0595376% 1,019 11 3,344 36 3,380 03 74 2088 EMMETSBURG CSD 92 0.1847093% 7,377 78 750 0.1498430% 2,565 27 9,942 105 10,047 10 48 2097 ENGLISH VALLEYS CSD 47 0.0943624% 3,769 40 429 0.0857102% 1,467 15 5,236 55 5,291															
13 83 2016 ELK HORN-KIMBALLTON CSD 29 0.0582236% 2,325 25 298 0.0595376% 1,019 11 3,344 36 3,380 03 74 2088 EMMETSBURG CSD 92 0.1847093% 7,377 78 750 0.1498430% 2,565 27 9,942 105 10,047 10 48 2097 ENGLISH VALLEYS CSD 47 0.0943624% 3,769 40 429 0.0857102% 1,467 15 5,236 55 5,291															
03 74 2088 EMMETSBURG CSD 92 0.1847093% 7,377 78 750 0.1498430% 2,565 27 9,942 105 10,047 10 48 2097 ENGLISH VALLEYS CSD 47 0.0943624% 3,769 40 429 0.0857102% 1,467 15 5,236 55 5,291															The state of the s
10 48 2097 ENGLISH VALLEYS CSD 47 0.0943624% 3,769 40 429 0.0857102% 1,467 15 5,236 55 5,291											,				The state of the s
															-

					70°	%	\longrightarrow	<u> </u>	30%	%	\longrightarrow			
	_				# of Poor		Carryover		Children		Carryover	Funds	Carryover	Total
/A	Co		Dist Name	# of Poor	% of Total	Allocation	Allocation	# of Children	% of Total	Allocation	Allocation	Allocation	Allocation	Allocation
3	32		ESTHERVILLE-LINCOLN CENTRAL CSD	136	0.2730485%	10,906	115	,	0.2755113%	4,716	50	15,622	165	15
l	05		EXIRA CSD	52	0.1044009%	4,170	44	313	0.0625345%	1,070	11	5,240	55	5
5	51		FAIRFIELD CSD	312	0.6264054%	25,019	264	2,344	0.4683092%	8,016	85	33,035	349	33
3	36		FARRAGUT CSD	21	0.0421619%	1,684	18		0.0593378%	1,016	11	2,700	29	2
2	95		FOREST CITY CSD	118	0.2369097%	9,462	100	1,217	0.2431452%	4,162	44	13,624	144	13
5	94		FORT DODGE CSD	591	1.1865564%	47,391	500	4,769	0.9528015%	16,309	172	63,700	672	64
6	56		FORT MADISON CSD	372	0.7468680%	29,830	315	2,802	0.5598133%	9,582	101	39,412	416	39
1	19		FREDERICKSBURG CSD	38	0.0762930%	3,047	32	310	0.0619351%	1,060	11	4,107	43	4
5	62	2367	FREMONT CSD	18	0.0361388%	1,443	15	203	0.0405575%	694	7	2,137	22	2
3	36	2369	FREMONT-MILLS CSD	42	0.0843238%	3,368	36	420	0.0839121%	1,436	15	4,804	51	4
2	47	2376	GALVA-HOLSTEIN CSD	51	0.1023932%	4,090	43	446	0.0891066%	1,525	16	5,615	59	į
2	41	2403	GARNER-HAYFIELD CSD	47	0.0943624%	3,769	40	693	0.1384549%	2,370	25	6,139	65	6
ŀ	60	2457	GEORGE-LITTLE ROCK CSD	52	0.1044009%	4,170	44	496	0.0990961%	1,696	18	5,866	62	
ı	85	2466	GILBERT CSD	29	0.0582236%	2,325	25	775	0.1548377%	2,650	28	4,975	53	Į
5	46	2493	GILMORE CITY-BRADGATE CSD	17	0.0341311%	1,363	14	190	0.0379602%	650	7	2,013	21	2
7	86	2502	GLADBROOK-REINBECK CSD	44	0.0883392%	3,528	37	803	0.1604319%	2,746	29	6,274	66	6
3	65	2511	GLENWOOD CSD	148	0.2971410%	11,868	125	2,026	0.4047758%	6,929	73	18,797	198	18
ı	14		GLIDDEN-RALSTON CSD	41	0.0823161%	3,288	35	353	0.0705261%	1,207	13	4,495	48	4
;	86		GMG CSD	15	0.0301156%	1,203	13		0.0725240%	1,241	13	2,444	26	
3	74		GRAETTINGER CSD	18	0.0361388%	1,443	15		0.0481495%	824	9	2,267	24	
2	12		GREENE CSD	15	0.0301156%	1,203	13		0.0669299%	1,146	12	2,349	25	
3	79		GRINNELL-NEWBURG CSD	186	0.3734340%	14,915	157	1,759	0.3514317%	6,015	63	20,930	220	2
3	15		GRISWOLD CSD	70	0.1405397%	5,613	59		0.1244696%	2,131	22	7,744	81	-
7	38		GRUNDY CENTER CSD	39	0.0783007%	3,127	33		0.1152792%	1,973	21	5,100	54	
	39		GUTHRIE CENTER CSD	45	0.0903469%	3,608	38		0.0925031%	1,583	17	5,191	55	
I	22		CLAYTON RIDGE CSD	78	0.0903409%	6,255	66		0.0923031%	2,685	28	8,940	94	•
	36		HAMBURG CSD	39	0.1366013%		33		0.0551422%		10	, , , , , , , , , , , , , , , , , , ,		
3						3,127				944		4,071	43	,
2	35		HAMPTON-DUMONT CSD	136	0.2730485%	10,906	115	,	0.2189705%	3,748	40	14,654	155	14
3	83		HARLAN CSD	127	0.2549791%	10,184	107	1,618	0.3232612%	5,533	58	15,717	165	1:
5	89		HARMONY CSD	45	0.0903469%	3,608	38		0.0956997%	1,638	17	5,246	55	
3	30		HARRIS-LAKE PARK CSD	31	0.0622390%	2,486	26		0.0603368%	1,033	11	3,519	37	;
4	71		HARTLEY-MELVIN-SANBORN CSD	58	0.1164472%	4,651	49		0.1650271%	2,825	30	7,476	79	•
)	92		HIGHLAND CSD	58	0.1164472%	4,651	49	600	0.1198744%	2,052	22	6,703	71	(
2	75		HINTON CSD	36	0.0722775%	2,887	30		0.1162781%	1,990	21	4,877	51	
)	48	2766	H-L-V CSD	47	0.0943624%	3,769	40	417	0.0833127%	1,426	15	5,195	55	
l	45		HOWARD-WINNESHIEK CSD	163	0.3272567%	13,071	138	1,621	0.3238606%	5,544	58	18,615	196	1
6	42	3033	HUBBARD-RADCLIFFE CSD	14	0.0281079%	1,123	12	490	0.0978974%	1,676	18	2,799	30	:
7	07	3042	HUDSON CSD	65	0.1305011%	5,212	55	708	0.1414518%	2,421	26	7,633	81	•
5	46	3060	HUMBOLDT CSD	114	0.2288789%	9,141	96	1,168	0.2333554%	3,994	42	13,135	138	1;
3	83	3168	IKM CSD	80	0.1606168%	6,415	68	468	0.0935020%	1,600	17	8,015	85	
7	10	3105	INDEPENDENCE CSD	121	0.2429329%	9,703	102	1,630	0.3256587%	5,574	59	15,277	161	1
	91	3114	INDIANOLA CSD	188	0.3774494%	15,075	159	2,999	0.5991721%	10,256	108	25,331	267	2
	61	3119	INTERSTATE 35 CSD	39	0.0783007%	3,127	33		0.1524402%	2,609	28	5,736	61	
)	52		IOWA CITY CSD	1,140	2.2887889%	91,414	964	11,430	2.2836068%	39,089	412	130,503	1376	13
6	42		IOWA FALLS CSD	108	0.2168326%	8,660	91	959	0.1915992%	3,280	35	11,940	126	1:
)	48		IOWA VALLEY CSD	44	0.0883392%	3,528	37	655	0.1308629%	2,240	24	5,768	61	
,	09		JANESVILLE CSD	11	0.0220848%	882	9	328	0.0655313%	1,122	12	2,004	21	
5	37		JEFFERSON- SCRANTON CSD	90	0.1806939%	7,217	76		0.2163732%	3,704	39	10,921	115	1
,	10		JESUP CSD	62	0.1244780%	4,972	52	·	0.2007896%	3,437	36	8,409	88	
	77		JOHNSTON CSD	145	0.2911179%	11,627	123		0.8916655%	15,263	161	26,890	284	2
;	56		KEOKUK CSD	365	0.7328140%	29,269	309	·	0.4421366%	7,568	80	36,837	389	3
;	54		KEOTA CSD	41	0.7326140%	3,288	35		0.0721244%	1,235	13	4,523	48	3
-	75 62		KINGSLEY-PIERSON CSD	32	0.0642467%	2,566	27 151	452	0.0903054%	1,546	16	4,112	43	2
	63		KNOXVILLE CSD	178	0.3573723%	14,273	151	1,896	0.3788030%	6,484	68	20,757	219	2
-	95		LAKE MILLS CSD	60	0.1204626%	4,811	51	671	0.1340595%	2,295	24	7,106	75	
ŀ	27		LAMONI CSD	67	0.1345165%	5,373	57	377	0.0753211%	1,289	14	6,662	71	
5	76		LAURENS-MARATHON CSD	37	0.0742853%	2,967	31	396	0.0791171%	1,354	14	4,321	45	4
2	97		LAWTON-BRONSON CSD	13	0.0261002%	1,042	11	656	0.1310626%	2,243	24	3,285	35	;
2	75		LE MARS CSD	139	0.2790716%	11,146	118	2,432	0.4858908%	8,317	88	19,463	206	19
4	87	3600	LENOX CSD	37	0.0742853%	2,967	31	331	0.0661307%	1,132	12	4,099	43	4

					70°	6		/	30%	%				
					# of Poor		Carryover		Children		Carryover	Funds	Carryover	Total
MA	Co	Dist	Dist Name	# of Poor	% of Total	Allocation	Allocation	# of Children	% of Total	Allocation	Allocation	Allocation	Allocation	Allocation
13	78		LEWIS CENTRAL CSD	245	0.4918889%	19,646	207	2,547	0.5088667%	8,710	92	28,356	299	28,655
15	93		LINEVILLE-CLIO CSD	15	0.0301156%	1,203	13		0.0157835%	270	3	1,473	16	1,489
10	57		LINN-MAR CSD	352	0.7067138%	28,226	298		1.0772710%	18,440	194	46,666	492	47,158
10 13	57 43		LISBON CSD LOGAN-MAGNOLIA CSD	51 55	0.1023932% 0.1104240%	4,090 4,410	43 47	605 602	0.1208733% 0.1202740%	2,069 2,059	22 22	6,159 6,469	65 69	6,224 6,538
10	52		LONE TREE CSD	48	0.0963701%	3,849	41	470	0.0939016%	1,607	17	5,456	58	5,514
09	58		LOUISA-MUSCATINE CSD	62	0.1244780%	4,972	52	822	0.1642279%	2,811	30	7,783	82	7,865
03	55		LU VERNE CSD	11	0.0220848%	882	9	100	0.0199791%	342	4	1,224	13	1,237
11	50		LYNNVILLE-SULLY CSD	17	0.0341311%	1,363	14	599	0.1196746%	2,048	22	3,411	36	3,447
11	80		MADRID CSD	52	0.1044009%	4,170	44	546	0.1090857%	1,867	20	6,037	64	6,101
13	65		MALVERN CSD	39	0.0783007%	3,127	33		0.0765198%	1,310	14	4,437	47	4,484
11 05	14 13		MANNING CSD MANSON NORTHWEST WEBSTER CSD	29 58	0.0582236% 0.1164472%	2,325 4,651	25 49	462 828	0.0923033% 0.1654266%	1,580 2,832	17 30	3,905 7,483	42 79	3,947 7,562
12	67		MAPLE VALLEY CSD	100	0.2007710%	8,019	85	574	0.1034200%	1,963	21	9,982	106	10,088
09	49		MAQUOKETA CSD	199	0.3995342%	15,957	168		0.3008847%	5,150	54	21,107	222	21,329
01	28		MAQUOKETA VALLEY CSD	67	0.1345165%	5,373	57	935	0.1868042%	3,198	34	8,571	91	8,662
04	18	4068	MARCUS-MERIDEN-CLEGHORN CSD	64	0.1284934%	5,132	54	526	0.1050899%	1,799	19	6,931	73	7,004
10	57		MARION INDEPENDENT SD	120	0.2409252%	9,623	101	1,842	0.3680143%	6,299	66	15,922	167	16,089
06	64		MARSHALLTOWN CSD	670	1.3451654%	53,726	567	4,832	0.9653883%	16,525	174	70,251	741	70,992
11	91		MARTENSDALE-ST MARYS CSD	26	0.0522004%	2,085	22	505	0.1008943%	1,727	18	3,812	40	3,852
02 16	17 29		MASON CITY CSD MEDIAPOLIS CSD	489 89	0.9817700% 0.1786862%	39,212 7,137	414 75	,	0.9288266% 0.1724193%	15,899 2,951	168 31	55,111 10,088	582 106	55,693 10,194
11	63		MELCHER-DALLAS CSD	25	0.0501927%	2,005	21	438	0.0875083%	1,498	16	3,503	37	3,540
01	22		MFL MAR MAC CSD	60	0.1204626%	4,811	51	927	0.1852059%	3,170	33	7,981	84	8,065
10	53		MIDLAND CSD	106	0.2128172%	8,500	90	738	0.1474455%	2,524	27	11,024	117	11,141
10	92	4271	MID-PRAIRIE CSD	248	0.4979120%	19,887	210	1,819	0.3634191%	6,221	66	26,108	276	26,384
13	43	4356	MISSOURI VALLEY CSD	38	0.0762930%	3,047	32		0.1798116%	3,078	32	6,125	64	6,189
04	84		MOC-FLOYD VALLEY CSD	102	0.2047864%	8,179	86		0.3660164%	6,265	66	14,444	152	14,596
06	79 50		MONTEZUMA CSD	36	0.0722775%	2,887	30		0.0962991%	1,648	17	4,535	47	4,582
10 15	53 04		MONTICELLO CSD MORAVIA CSD	57 49	0.1144394% 0.0983778%	4,571 3,929	48 41	1,085 314	0.2167728% 0.0627343%	3,711 1,074	39 11	8,282 5,003	87 52	8,369 5,055
14	27		MORMON TRAIL CSD	62	0.1244780%	4,972	52	321	0.0627343%	1,074	12	6,070	64	6,134
16	58		MORNING SUN CSD	32	0.0642467%	2,566	27	223	0.0445533%	763	8	3,329	35	3,364
15	04		MOULTON-UDELL CSD	45	0.0903469%	3,608	38		0.0539435%	923	10	4,531	48	4,579
14	80	4527	MOUNT AYR CSD	98	0.1967555%	7,858	83	686	0.1370564%	2,346	25	10,204	108	10,312
16	44		MOUNT PLEASANT CSD	202	0.4055573%	16,198	171	,	0.4105697%	7,028	74	23,226	245	23,471
10	57		MOUNT VERNON CSD	38	0.0762930%	3,047	32	1,044	0.2085814%	3,570	38	6,617	70	6,687
14	20		MURRAY CSD	23	0.0461773%	1,844	19		0.0621349%	1,064	11	2,908	30	2,938
09 07	70 19		MUSCATINE CSD NASHUA-PLAINFIELD CSD	626 72	1.2568262% 0.1445551%	50,198 5,774	529 61	5,130 749	1.0249259% 0.1496432%	17,544 2,561	185 27	67,742 8,335	714 88	68,456 8,423
11	85		NEVADA CSD	83	0.1666399%	6,656	70	1,391	0.2779088%	4,757	50	11,413	120	11,533
01	19		NEW HAMPTON CSD	98	0.1967555%	7,858	83		0.2455427%	4,203	44	12,061	127	12,188
16	44		NEW LONDON CSD	27	0.0542082%	2,165	23		0.1044905%	1,789	19	3,954	42	3,996
14	87	4698	NEW MARKET CSD	27	0.0542082%	2,165	23	171	0.0341642%	585	6	2,750	29	2,779
05	11		NEWELL-FONDA CSD	61	0.1224703%	4,891	52	471	0.0941014%	1,611	17	6,502	69	6,571
11	50		NEWTON CSD	246	0.4938966%	19,726	208		0.6762912%	11,576	122	31,302	330	31,632
13	65		NISHNA VALLEY CSD	34	0.0682621%	2,726	29		0.0543430%	930	10	3,656	39	3,695
14	01		NODAWAY VALLEY CSD	90	0.1806939%	7,217	76		0.1482446%	2,538	27	9,755	103	9,858
02 10	34 16		NORA SPRINGS-ROCK FALLS CSD NORTH CEDAR CSD	18 86	0.0361388% 0.1726630%	1,443 6,896	15 73		0.0881077% 0.1790124%	1,508 3,064	16 32	2,951 9,960	31 105	2,982 10,065
02	98		NORTH CENTRAL CSD	34	0.0682621%	2,726	29		0.1078869%	1,847	19	4,573	48	4,621
01	33		NORTH FAYETTE CSD	103	0.2067941%	8,259	87	1,014	0.2025877%	3,468	37	11,727	124	11,851
02	95		NORTH IOWA CSD	49	0.0983778%	3,929	41	556	0.1110836%	1,901	20	5,830	61	5,891
03	55		NORTH KOSSUTH CSD	41	0.0823161%	3,288	35		0.0825135%	1,412	15	4,700	50	4,750
10	57		NORTH LINN CSD	87	0.1746707%	6,976	74		0.1614308%	2,763	29	9,739	103	9,842
15	62		NORTH MAHASKA CSD	51	0.1023932%	4,090	43		0.1174769%	2,011	21	6,101	64	6,165
11	77		NORTH POLK CSD	29	0.0582236%	2,325	25		0.1892017%	3,239	34	5,564	59	5,623
09 07	82 86		NORTH SCOTT CSD NORTH TAMA CSD	150 41	0.3011564% 0.0823161%	12,028 3,288	127 35		0.5755968% 0.1012938%	9,853 1,734	104 18	21,881 5,022	231	22,112 5,075
01	96		NORTH TAMA CSD NORTH WINNESHIEK CSD	22	0.0623161%	1,764	19		0.0667301%	1,734	12	2,906	53 31	2,937
1~ .				1	2.0 1000 /0	1,7 54	13	1	5.5557 551 70	1,172		_,550	01	2,007

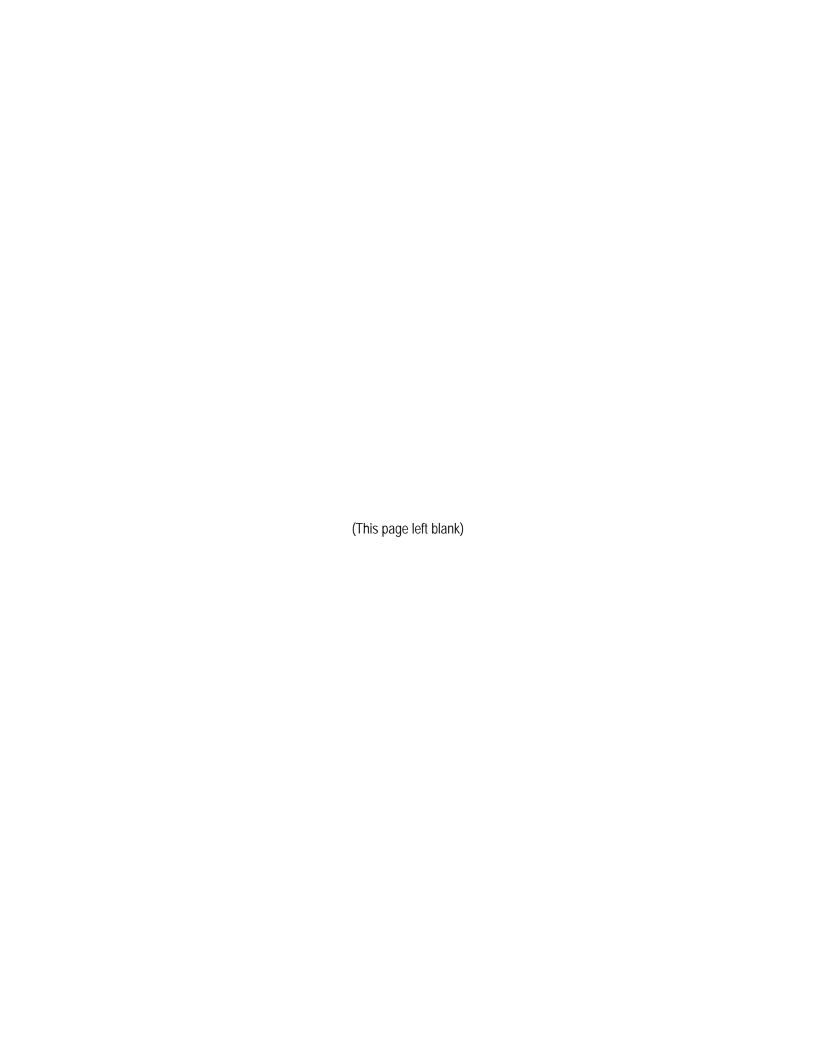
	$\langle 70\% \rangle \langle 30\% \rangle$													
					# of Poor		Carryover		Children		Carryover	Funds	Carryover	Total
MA	Co	Dist	Dist Name	# of Poor	% of Total	Allocation	Allocation	# of Children	% of Total	Allocation	Allocation	Allocation	Allocation	Allocation
09	23		NORTHEAST CSD	48	0.0963701%	3,849	41		0.1322614%	2,264	24	6,113	65	6,178
05	40		NORTHEAST HAMILTON CSD	5	0.0100385%	401	4	314	0.0627343%	1,074	11	1,475	15	1,490
02	98		NORTHWOOD-KENSETT CSD	42	0.0843238%	3,368	36		0.0968985%	1,659	17	5,027	53	5,080
11 05	91 81		NORWALK CSD ODEBOLT-ARTHUR CSD	74 36	0.1485705% 0.0722775%	5,934 2,887	63 30		0.3913898% 0.0783179%	6,699 1,341	71 14	12,633 4,228	134 44	12,767 4,272
01	33		OELWEIN CSD	280	0.5621587%	22,453	237		0.3160688%	5,410	57	27,863	294	28,157
11	08		OGDEN CSD	22	0.0441696%	1,764	19		0.1364570%	2,336	25	4,100	44	4,144
03	30	4890	OKOBOJI CSD	103	0.2067941%	8,259	87	934	0.1866044%	3,194	34	11,453	121	11,574
10	53	4905	OLIN CSD	35	0.0702698%	2,807	30		0.0579393%	992	10	3,799	40	3,839
14	01		ORIENT-MACKSBURG CSD	25	0.0501927%	2,005	21		0.0551422%	944	10	2,949	31	2,980
02	66		OSAGE CSD	79	0.1586091%	6,335	67		0.2125772%	3,639	38	9,974	105	10,079
15 15	62 90		OSKALOOSA CSD OTTUMWA CSD	318 748	0.6384517% 1.5017668%	25,500 59,980	269 633		0.5044713% 0.9322230%	8,635 15,957	91 168	34,135 75,937	360 801	34,495 76,738
11	39		PANORAMA CSD	740	0.1566013%	6,255	66		0.1460469%	2,500	26	8,755	92	8,847
05	37		PATON-CHURDAN CSD	28	0.0562159%	2,245	24		0.0411569%	704	7	2,949	31	2,980
11	50		PCM CSD	57	0.1144394%	4,571	48		0.1975929%	3,382	36	7,953	84	8,037
15	54	5163	PEKIN CSD	68	0.1365243%	5,453	58	673	0.1344591%	2,302	24	7,755	82	7,837
11	63		PELLA CSD	162	0.3252490%	12,990	137		0.4840927%	8,286	87	21,276	224	21,500
11	25		PERRY CSD	223	0.4477192%	17,882	189		0.4137664%	7,082	75	24,964	264	25,228
09 11	82 63		PLEASANT VALLEY CSD PLEASANTVILLE CSD	73 38	0.1465628% 0.0762930%	5,854 3,047	62 32		0.6549137% 0.1276662%	11,210 2,185	118 23	17,064	180 55	17,244 5,287
05	76		POCAHONTAS AREA CSD	83	0.0762930%	6,656	70		0.1276662%	2,165	23	5,232 8,944	94	9,038
05	13		POMEROY-PALMER CSD	31	0.0622390%	2,486	26		0.0531443%	910	10	3,396	36	3,432
01	03		POSTVILLE CSD	86	0.1726630%	6,896	73		0.1284654%	2,199	23	9,095	96	9,191
05	94	5325	PRAIRIE VALLEY CSD	100	0.2007710%	8,019	85	784	0.1566358%	2,681	28	10,700	113	10,813
14	02		PRESCOTT CSD	2	0.0040154%	160	2	-	0.0187803%	321	3	481	5	486
09	49		PRESTON CSD	39	0.0783007%	3,127	33		0.0599372%	1,026	11	4,153	44	4,197
14	69 75		RED OAK CSD	154	0.3091873% 0.1525859%	12,349	130		0.2501379%	4,282	45	16,631	175	16,806
12 01	75 45		REMSEN-UNION CSD RICEVILLE CSD	76 89	0.1525859%	6,094 7,137	64 75		0.1422509% 0.1214727%	2,435 2,079	26 22	8,529 9,216	90 97	8,619 9,313
12	97		RIVER VALLEY CSD	86	0.1726630%	6,896	73		0.1054894%	1,806	19	8,702	92	8,794
13	78		RIVERSIDE CSD	75	0.1505782%	6,014	63		0.1466463%	2,510	26	8,524	89	8,613
04	84	5607	ROCK VALLEY CSD	58	0.1164472%	4,651	49	826	0.1650271%	2,825	30	7,476	79	7,555
05	13		ROCKWELL CITY-LYTTON CSD	37	0.0742853%	2,967	31		0.0978974%	1,676	18	4,643	49	4,692
02	17		ROCKWELL-SWALEDALE CSD	36	0.0722775%	2,887	30		0.0807154%	1,382	15	4,269	45	4,314
11	85 34		ROLAND-STORY CSD	43 84	0.0863315%	3,448	36		0.1997906%	3,420	36	6,868	72	6,940
02 15	59		RUDD-ROCKFORD-MARBLE RK CSD RUSSELL CSD	39	0.1686476% 0.0783007%	6,736 3,127	71 33		0.1234706% 0.0403577%	2,113 691	22 7	8,849 3,818	93 40	8,942 3,858
03	74		RUTHVEN-AYRSHIRE CSD	22	0.0441696%	1,764	19		0.0481495%	824	9	2,588	28	2,616
05	81		SAC CSD	58	0.1164472%	4,651	49		0.0873085%	1,494	16	6,145	65	6,210
11	77	5805	SAYDEL CSD	117	0.2349020%	9,382	99	1,425	0.2847016%	4,873	51	14,255	150	14,405
05	81		SCHALLER-CRESTLAND CSD	29	0.0582236%	2,325	25		0.0897060%	1,536	16	3,861	41	3,902
12	24		SCHLESWIG CSD	8	0.0160617%	642	7	300	0.0599372%	1,026	11	1,668	18	1,686
03	55		SENTRAL CSD	33	0.0662544%	2,646	28		0.0475502%	814	9	3,460	37	3,497
12 15	97 93		SERGEANT BLUFF-LUTON CSD SEYMOUR CSD	68 66	0.1365243% 0.1325088%	5,453 5,292	58 56		0.2417466% 0.0695271%	4,138 1,190	44 13	9,591 6,482	102 69	9,693 6,551
02	35		SHEFFIELD-CHAPIN-MESERVY-THORN		0.0622390%	2,486	26		0.0093271%	1,150	16	4,045	42	4,087
04	71		SHELDON CSD	86	0.1726630%	6,896	73		0.2309580%	3,953	42	10,849	115	10,964
13	73		SHENANDOAH CSD	172	0.3453261%	13,792	145		0.1995908%	3,416	36	17,208	181	17,389
04	72	5994	SIBLEY-OCHEYEDAN CSD	63	0.1264857%	5,052	53	832	0.1662258%	2,845	30	7,897	83	7,980
13	36		SIDNEY CSD	38	0.0762930%	3,047	32		0.0755209%	1,293	14	4,340	46	4,386
15	54		SIGOURNEY CSD	110	0.2208481%	8,821	93		0.1370564%	2,346	25	11,167	118	11,285
04	84		SIOUX CENTER CSD	77	0.1545936%	6,174	65		0.2693178%	4,610	49	10,784	114	10,898
05	11		SIOUX CENTRAL CSD	27	0.0542082%	2,165	23		0.0937018%	1,604	17 564	3,769	40	3,809
12 10	97 52		SIOUX CITY CSD SOLON CSD	2,252	4.5213620% 0.0060231%	180,583 241	1,905 3	15,647 1,111	3.1261238% 0.2219674%	53,510 3,799	564 40	234,093 4,040	2469 43	236,562 4,083
03	21		SOUTH CLAY CSD	14	0.0080231%	1,123	12		0.0355627%	609	6	1,732	18	1,750
05	40		SOUTH HAMILTON CSD	58	0.1164472%	4,651	49		0.1460469%	2,500	26	7,151	75	7,226
04	71		SOUTH O'BRIEN CSD	68	0.1365243%	5,453	58		0.1508419%	2,582	27	8,035	85	8,120
13	73	6097	SOUTH PAGE CSD	20	0.0401542%	1,604	17	322	0.0643326%	1,101	12	2,705	29	2,734

					70°	<u> </u>	\longrightarrow		30	%	\longrightarrow			
	_				# of Poor		Carryover		Children		Carryover	Funds	Carryover	Total
Α	Co		Dist Name	# of Poor	% of Total	Allocation	Allocation	# of Children	% of Total	Allocation	Allocation	Allocation	Allocation	Allocation
3	86		SOUTH TAMA COUNTY CSD	192	0.3854802%	15,396	162	,	0.3426409%	5,865	62	21,261	224	21
	96		SOUTH WINNESHIEK CSD	65	0.1305011%	5,212	55		0.1694224%	2,900	31	8,112	86	8
	77		SOUTHEAST POLK CSD	253	0.5079505%	20,288	214	4,573	0.9136425%	15,639	165	35,927	379	36
	91		SOUTHEAST WARREN CSD	52	0.1044009%	4,170	44	578	0.1154790%	1,977	21	6,147	65	6
5	94		SOUTHEAST WEBSTER-GRAND CSD	81	0.1626245%	6,495	69	672	0.1342593%	2,298	24	8,793	93	8
5	13		SOUTHERN CAL CSD	87	0.1746707%	6,976	74	561	0.1120825%	1,919	20	8,895	94	3
3	21		SPENCER CSD	185	0.3714263%	14,835	156	·	0.3798020%	6,501	69	21,336	225	21
3	30		SPIRIT LAKE CSD	28	0.0562159%	2,245	24	1,184	0.2365521%	4,049	43	6,294	67	6
)	57		SPRINGVILLE CSD	13	0.0261002%	1,042	11	499	0.0996955%	1,706	18	2,748	29	2
2	66		ST ANSGAR CSD	81	0.1626245%	6,495	69		0.1518409%	2,599	27	9,094	96	Ś
1	69		STANTON CSD	37	0.0742853%	2,967	31	248	0.0495481%	848	9	3,815	40	;
	22		STARMONT CSD	76	0.1525859%	6,094	64	796	0.1590333%	2,722	29	8,816	93	
5	11		STORM LAKE CSD	197	0.3955188%	15,797	167	1,962	0.3919892%	6,710	71	22,507	238	22
5	40		STRATFORD CSD	20	0.0401542%	1,604	17	224	0.0447531%	766	8	2,370	25	2
7	09		SUMNER CSD	40	0.0803084%	3,208	34	618	0.1234706%	2,113	22	5,321	56	
3	30		TERRIL CSD	17	0.0341311%	1,363	14	199	0.0397583%	681	7	2,044	21	2
)	16		TIPTON CSD	53	0.1064086%	4,250	45		0.1588335%	2,719	29	6,969	74	-
3	55		TITONKA CSD	20	0.0401542%	1,604	17	198	0.0395585%	677	7	2,281	24	
3	78		TREYNOR CSD	26	0.0522004%	2,085	22	502	0.1002949%	1,717	18	3,802	40	;
3	78		TRI-CENTER CSD	45	0.0903469%	3,608	38	706	0.1410522%	2,414	25	6,022	63	(
5	54		TRI-COUNTY CSD	27	0.0542082%	2,165	23	352	0.0703263%	1,204	13	3,369	36	;
7	09		TRIPOLI CSD	59	0.1184549%	4,731	50	466	0.0931024%	1,594	17	6,325	67	
	33		TURKEY VALLEY CSD	59	0.1184549%	4,731	50		0.1260679%	2,158	23	6,889	73	
1	63		TWIN CEDARS CSD	63	0.1264857%	5,052	53		0.0925031%	1,583	17	6,635	70	
5	46		TWIN RIVERS CSD	22	0.0441696%	1,764	19		0.0473504%	811	9	2,575	28	:
3	78		UNDERWOOD CSD	8	0.0160617%	642	7	678	0.1354580%	2,319	24	2,961	31	2
7	07		UNION CSD	65	0.1305011%	5,212	55		0.2249642%	3,851	41	9,063	96	,
1	80		UNITED CSD	28	0.0562159%	2,245	24		0.0855104%	1,464	15	3,709	39	;
l	77		URBANDALE CSD	220	0.4416961%	17,641	186	3,744	0.7480161%	12,804	135	30,445	321	3
l	33		VALLEY CSD	47	0.0943624%	3,769	40	528	0.1054894%	1,806	19	5,575	59	:
5	89		VAN BUREN CSD	142	0.2850948%	11,387	120	899	0.1796118%	3,074	32	14,461	152	14
l	25		VAN METER CSD	20	0.0401542%	1,604	17	644	0.1286652%	2,202	23	3,806	40	
2	17		VENTURA CSD	12	0.0240925%	962	10	297	0.0593378%	1,016	11	1,978	21	
ŀ	69		VILLISCA CSD	53	0.1064086%	4,250	45	426	0.0851108%	1,457	15	5,707	60	
)	06		VINTON-SHELLSBURG CSD	188	0.3774494%	15,075	159	·	0.3694129%	6,323	67	21,398	226	2
6	44		WACO CSD	45	0.0903469%	3,608	38		0.1150794%	1,970	21	5,578	59	
5	81		WALL-LAKE VIEW-AUBURN CSD	61	0.1224703%	4,891	52		0.1090857%	1,867	20	6,758	72	
3	78		WALNUT CSD	46	0.0923546%	3,689	39		0.0577395%	988	10	4,677	49	
6	58		WAPELLO CSD	89	0.1786862%	7,137	75		0.1426505%	2,442	26	9,579	101	9
7	09		WAPSIE VALLEY CSD	134	0.2690331%	10,745	113		0.1494434%	2,558	27	13,303	140	1:
)	92		WASHINGTON CSD	165	0.3312721%	13,231	140	1,726	0.3448386%	5,903	62	19,134	202	19
7	07		WATERLOO CSD	1,889	3.7925634%	151,475	1,598	12,450	2.4873932%	42,577	449	194,052	2047	19
l	25		WAUKEE CSD	149	0.2991487%	11,948	126	2,746	0.5486250%	9,391	99	21,339	225	2
7	09		WAVERLY-SHELL ROCK CSD	72	0.1445551%	5,774	61	1,874	0.3744076%	6,409	68	12,183	129	1:
5	93		WAYNE CSD	80	0.1606168%	6,415	68	613	0.1224716%	2,096	22	8,511	90	
5	40		WEBSTER CITY CSD	162	0.3252490%	12,990	137	1,606	0.3208637%	5,492	58	18,482	195	18
3	74		WEST BEND-MALLARD CSD	30	0.0602313%	2,406	25		0.0819142%	1,402	15	3,808	40	;
)	16		WEST BRANCH CSD	24	0.0481850%	1,925	20	773	0.1544381%	2,644	28	4,569	48	
6	29		WEST BURLINGTON IND SD	37	0.0742853%	2,967	31	431	0.0861098%	1,474	16	4,441	47	•
	33		WEST CENTRAL CSD	46	0.0923546%	3,689	39		0.0665303%	1,139	12	4,828	51	
	39		WEST CENTRAL VALLEY CSD	53	0.1064086%	4,250	45	,	0.2131766%	3,649	38	7,899	83	
	28		WEST DELAWARE COUNTY CSD	194	0.3894957%	15,556	164		0.3586242%	6,139	65	21,695	229	2
	77		WEST DES MOINES CSD	453	0.9094925%	36,325	383	·	2.1199783%	36,288	383	72,613	766	7
	41		WEST HANCOCK CSD	67	0.1345165%	5,373	57	671	0.1340595%	2,295	24	7,668	81	
3	43	6969	WEST HARRISON CSD	76	0.1525859%	6,094	64	532	0.1062886%	1,819	19	7,913	83	
)	70	6975	WEST LIBERTY CSD	100	0.2007710%	8,019	85	1,115	0.2227665%	3,813	40	11,832	125	1
4	60	6983	WEST LYON CSD	72	0.1445551%	5,774	61	915	0.1828084%	3,129	33	8,903	94	8
3	64	6985	WEST MARSHALL CSD	69	0.1385320%	5,533	58	809	0.1616306%	2,767	29	8,300	87	;
2	67	6987	WEST MONONA CSD	44	0.0883392%	3,528	37	650	0.1298639%	2,223	23	5,751	60	5
4	84	6000	WEST SIOUX CSD	58	0.1164472%	4,651	49	750	0.1498430%	2,565	27	7,216	76	7

				_	70%	/ 0		_	30%	6				
					# of Poor		Carryover		Children		Carryover	Funds	Carryover	Total
MA	Co	Dist	Dist Name	# of Poor	% of Total	Allocation	Allocation	# of Children	% of Total	Allocation	Allocation	Allocation	Allocation	Allocation
01	31	6961	WESTERN DUBUQUE CSD	283	0.5681818%	22,693	239	3,964	0.7919700%	13,556	143	36,249	382	36,631
12	97	6992	WESTWOOD CSD	61	0.1224703%	4,891	52	708	0.1414518%	2,421	26	7,312	78	7,390
12	67	7002	WHITING CSD	15	0.0301156%	1,203	13	202	0.0403577%	691	7	1,894	20	1,914
10	48	7029	WILLIAMSBURG CSD	34	0.0682621%	2,726	29	1,160	0.2317571%	3,967	42	6,693	71	6,764
09	70	7038	WILTON CSD	94	0.1887247%	7,538	79	876	0.1750166%	2,996	32	10,534	111	10,645
16	44	7047	WINFIELD-MT UNION CSD	42	0.0843238%	3,368	36	393	0.0785177%	1,344	14	4,712	50	4,762
11	61	7056	WINTERSET CSD	106	0.2128172%	8,500	90	1,593	0.3182665%	5,448	57	13,948	147	14,095
02	41	7083	WODEN-CRYSTAL LAKE CSD	29	0.0582236%	2,325	25	177	0.0353629%	605	6	2,930	31	2,961
13	43	7092	WOODBINE CSD	67	0.1345165%	5,373	57	476	0.0951003%	1,628	17	7,001	74	7,075
12	97	7098	WOODBURY CENTRAL CSD	43	0.0863315%	3,448	36	625	0.1248691%	2,137	23	5,585	59	5,644
11	25	7110	WOODWARD-GRANGER CSD	55	0.1104240%	4,410	47	954	0.1906003%	3,263	34	7,673	81	7,754
10	06	6660	Iowa Braille & Sight Saving School	0	0.0000000%	0	0	30	0.0059937%	103	1	103	1	104
06	86	6098	Iowa Juvenile Home-Toledo	0	0.0000000%	0	0	82	0.0163828%	280	3	280	3	283
13	78	1476	Iowa School for the Deaf	0	0.0000000%	0	0	108	0.0215774%	369	4	369	4	373
06	42	2007	Iowa Training School-Eldora	0	0.0000000%	0	0	183	0.0365617%	626	7	626	7	633
07	07	1044	Malcolm Price Lab School	0	0.0000000%	0	0	382	0.0763200%	1,306	14	1,306	14	1,320
06	86	0441	Sac & Fox School	0	0.0000000%	0	0	142	0.0283703%	486	5	486	5	491
37	0			49,808	100.0000%	3,993,993	42,125	500,524	100.0000%	1,711,711	18,053	5,705,704	60,178	5,765,882

3,993,992.80 42,124.77 1,711,711.20 18,053.47

Appendix I


lowa Department of Education Bureau of Community Colleges & Career and Technical Education Grimes State Office Building Des Moines, Iowa

FY 2008 Allocation Table for Post Secondary Career & Technical Education Programs Title I, Part C, Section 132 of the

Carl D. Perkins Career & Technical Act of 2006 CFDA #84.048

MAS #	COMMUNITY COLLEGE	FY 06' PELL COUNT	FY 06' SHARE	ALLOCATION FROM FY '08 FUNDS	ALLOCATION FROM CARRYOVER	AL	TOTAL LOCATION
ı	NORTHEAST	739	6.417716%	287,710	499	\$	288,209
II	NORTH IOWA	329	2.857143%	128,087	222	\$	128,309
Ш	IOWA LAKES	655	5.688233%	255,006	442	\$	255,448
IV	NORTHWEST	173	1.502388%	67,353	117	\$	67,470
V	IOWA CENTRAL	626	5.436387%	243,716	423	\$	244,139
VI	IOWA VALLEY	285	2.475033%	110,957	192	\$	111,149
VII	HAWKEYE	942	8.180634%	366,742	636	\$	367,378
IX	EASTERN IOWA	872	7.572731%	339,490	589	\$	340,079
Χ	KIRKWOOD	1,800	15.631785%	700,781	1,215	\$	701,996
ΧI	DMACC	1,681	14.598350%	654,452	1,135	\$	655,587
XII	WESTERN IOWA	894	7.763786%	348,055	604	\$	348,659
XIII	IOWA WESTERN	510	4.429006%	198,555	344	\$	198,899
XIV	SOUTHWESTERN	227	1.971342%	88,376	153	\$	88,529
ΧV	INDIAN HILLS	1,062	9.222753%	413,461	717	\$	414,178
XVI	SOUTHEASTERN	720	6.252714%	280,312	486	\$	280,798
	TOTAL	11,515	100.00%	4,483,053	7,774	\$	4,490,827

Allocation based on Pell Grant/BIA Headcount Shares

Presented to the Iowa State Board of Education—March 8, 2007

1

Transition Plan Requirements

- Program Administration
- Special Populations
- Accountability and Evaluation
- Tech Prep Programs
- Financial Requirements
- EDGAR Certification and Assurances

Program Administration

- Program of Study:
 - Recipients must develop one program of study.
 - Offered to students as an option when planning future coursework.
 - Incorporates secondary and postsecondary education.
 - Includes coherent and rigorous content.
 - Non-duplicative progression of courses.
 - May include concurrent enrollment.

Program Administration (cont'd)

- Lead to an industry-recognized certificate or credential.
- Competency-based instruction.
- Three sequential units.
- Approved by the Director of Iowa Department of Education.
- Annual evaluation of performance measures.
- DE has established a stakeholders group to develop framework.

Program Administration (cont'd)

- Occupational and Employment Information
 - Prepare students for high-skill, high-wage, or high-demand occupations.
 - Annual growth rate of 1.2%.
 - Above mean annual wage for employment.
 - High skill on a regional basis.
 - DE designation of Career Information Delivery System which provides students, teachers, counselors, et al. with information for career planning.
 - Prepare for non-traditional careers.

Program Administration (cont'd)

- Professional Development
 - Program management committees.
 - Application for local funds.
 - State and regional workshops and conferences.
 - DE consultant distribution list of teachers.
 - Monitoring and accreditation.
 - Data quality and accountability.

Special Populations

- Special populations students will have equal access to career and technical education programs.
- Assurances will include the nondiscrimination policy statement.
- Recipients must be accountable for the success of special population students.

Accountability and Evaluation

- Secondary and postsecondary indicators are defined.
- Secondary agreed upon performance levels:
 - Academic attainment reading/language.
 - Academic attainment mathematics.
 - Student graduation rates.
- Performance measures must be quantifiable and measurable to make progress toward improving cte programs.
- Data must be complete, accurate, and reliable.
- Performance measures aligned with other federal programs.

Tech Prep

- Must describe basis to award grants to tech prep consortia:
 - Basic allocation of \$50,000.
 - Balance based on number of local education agencies.
- Five percent (5%) for administration.
- Copy of application will be submitted.
- List of consortia and projected funding.

- Formula for allocation of funds between secondary and postsecondary:
 - 1/3 contact hours.
 - 1/3 total total operation costs.
 - 1/3 federal calculation for states.
- Fifty-six percent (56%) of the funds distributed to secondary and 44% of funds distributed to postsecondary.

Perkins Basic Grant Allocation FY 2008

% of Grant	Grant Categories	Basic State Grant
5%	ADMINISTRATION	608,162.00
10%	STATE PROGRAM AND LEADERSHIP	1,216,324.00
	RESERVE FUND	150,000.00
85%	-SECONDARY - 56%	5,705,704.00
	POST SECONDARY - 44%	4,483,053.00
	TOTAL BASIC	12,163,243.00

Financial Requirements (cont'd)

- Allocate funds to secondary and postsecondary:
 - Secondary Distribution
 - 30% age 5-17.
 - 70% age 5-17 below poverty level.
 - Postsecondary Distribution
 - Number of individuals who are Federal Pell Grant recipients.
- Consortia will describe the process to allocate funds within the consortium.

Perkins Basic Grant Allocation FY 2004 – FY 2008

State			Percent of
Fiscal		Increase/Decrease	Increase/Decrease
Year	Basic State Grant	From Previous Year	From Previous Year
Projected			
2008	\$12,163,243	-\$157,258	-1.28%
2007	\$12,320,501	-\$543,871	-4.23%
2006	\$12,864,372	-\$171,743	-1.32%
2005	\$13,036,115	-\$357,521	-2.67%
2004	\$13,393,636		

Tech prep allocations of \$1,245,235 have not changed from FY 2004 to FY 2008.

Financial Requirements (cont'd)

- Reserve funds will be made available on a regional basis to community colleges that propose to advance the academic core in support of career and technical education programs linked to economic development priorities of the state (i.e., Information Technology, Bioscience/Biotechnology, and Advanced Manufacturing)
- Reserve funds will be matched with other Department of Education funding sources.

EDGAR Certifications and Assurances

- Iowa State Board of Education has responsibility for approval of the Carl D. Perkins Plan.
- Certification and assurances signed.